Skip to Content
Merck
CN
All Photos(3)

Key Documents

732613

Sigma-Aldrich

Poly(ethylene glycol) methyl ether

average MN 20,000, methoxy, hydroxyl

Synonym(s):

Polyethylene glycol, Methoxy poly(ethylene glycol), Polyethylene glycol monomethyl ether, mPEG

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
CH3(OCH2CH2)nOH
CAS Number:
MDL number:
UNSPSC Code:
12162002
NACRES:
NA.23

Product Name

Poly(ethylene glycol) methyl ether, average Mn 20,000

vapor density

>1 (vs air)

Quality Level

vapor pressure

0.05 mmHg ( 20 °C)

form

powder or crystals

mol wt

average Mn 20,000

mp

64-69 °C

Mw/Mn

≤1.2

Ω-end

hydroxyl

α-end

methoxy

storage temp.

−20°C

SMILES string

O(CCO)C

InChI

1S/C3H8O2/c1-5-3-2-4/h4H,2-3H2,1H3

InChI key

XNWFRZJHXBZDAG-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Application

  • Deoxycholic acid-grafted PEGylated chitosan micelles for the delivery of mitomycin C.: This study develops PEGylated chitosan micelles grafted with deoxycholic acid for effective delivery of mitomycin C, showcasing the potential of PEGylated compounds in pharmaceutical formulations and drug delivery systems (Zhang et al., 2015).

Storage Class Code

11 - Combustible Solids

WGK

WGK 1

Flash Point(F)

359.6 °F

Flash Point(C)

182 °C


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Jiani Zheng et al.
Langmuir : the ACS journal of surfaces and colloids, 28(37), 13261-13273 (2012-08-28)
Alginate/chitosan/alginate (ACA) hydrogel microcapsules were modified with methoxy poly(ethylene glycol) (MPEG) to improve protein repellency and biocompatibility. Increased MPEG surface graft density (n(S)) on hydrogel microcapsules was achieved by controlling the grafting parameters including the buffer layer substrate, membrane thickness
Lei Liu et al.
International journal of pharmaceutics, 443(1-2), 175-182 (2013-01-05)
This work aims to develop curcumin (Cur) loaded biodegradable self-assembled polymeric micelles (Cur-M) to overcome poor water solubility of Cur and to meet the requirement of intravenous administration. Cur-M were prepared by solid dispersion method, which was simple and easy
Robert K Delong et al.
Nanomedicine (London, England), 7(12), 1851-1862 (2012-09-05)
Nanoparticle conjugates have the potential for delivering siRNA, splice-shifting oligomers or nucleic acid vaccines, and can be applicable to anticancer therapeutics. This article compares tripartite conjugates with gold nanoparticles or synthetic methoxypoly(ethylene glycol)-block-polyamidoamine dendrimers. Interactions with model liposomes of a
Smita K Pawar et al.
International journal of pharmaceutics, 436(1-2), 183-193 (2012-06-23)
Efficacy of anticancer drug is limited by the severe adverse effects induced by drug; therefore the crux is in designing delivery systems targeted only to cancer cells. Toward this objectives, we propose, synthesis of poly(ethylene glycol) (PEG)-doxorubicin (DOX) prodrug conjugates
Prakash G Avaji et al.
Bioorganic & medicinal chemistry letters, 23(6), 1763-1767 (2013-02-16)
Saturated fatty acids (FA) were grafted using tyrosine as a spacer group to the cyclotriphosphazene ring along with equimolar hydrophilic methoxy poly(ethylene glycol) (MPEG) in cis-nongeminal way. Seven new cyclotriphosphazene amphiphiles were prepared from combinations of hydrophilic MPEGs with different

Articles

Progress in biotechnology fields such as tissue engineering and drug delivery is accompanied by an increasing demand for diverse functional biomaterials. One class of biomaterials that has been the subject of intense research interest is hydrogels, because they closely mimic the natural environment of cells, both chemically and physically and therefore can be used as support to grow cells. This article specifically discusses poly(ethylene glycol) (PEG) hydrogels, which are good for biological applications because they do not generally elicit an immune response. PEGs offer a readily available, easy to modify polymer for widespread use in hydrogel fabrication, including 2D and 3D scaffold for tissue culture. The degradable linkages also enable a variety of applications for release of therapeutic agents.

Designing biomaterial scaffolds mimicking complex living tissue structures is crucial for tissue engineering and regenerative medicine advancements.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service