跳转至内容
Merck
CN
主页有机电子学基于PCBM的n型半导体

基于PCBM的n型半导体

富勒烯 (C60)材料的独特化学和物理学不断刺激着应用和基础科学取得进步。富勒烯作为优异的电子受体而闻名,可以通过化学改性来提高其在有机溶剂中的溶解度。此类可溶性富勒烯衍生物属于已知的最好n型有机半导体1。此外,通过将富勒烯与供电子体或光敏大分子通过共价连接而形成的分子异质结显示了其作为固有p / n型半导体的潜力,甚至有希望成为生物光合作用的人造模拟物。2 为帮助客户在有机电子领域实现研究突破,我们很高兴能为您提供一系列高质量的功能化富勒烯产品。

甲烷富勒烯苯基-C61 -丁酸-甲酯([60] PCBM)是一种有效的溶液可加工型n型有机半导体。其可以与p型共轭聚合物混合制成光伏(PV)电池3,4,以及薄膜有机场效应晶体管 (OFETs)5,在光电探测器领域也显现出了一定的潜力。6与优异的p型半导体一样,[60] PCBM可溶于以下有机溶剂:MDMO-PPV,MEH-PPV和P3HT一类(表1)。这简化了杂化PV电池和OFET中混合物制备和溶液处理的工艺。 PCBM表现出的高亲和力是由p型聚合物以及偏置薄膜OFETs中的金属电极所进行的高效光致电子转移所决定的。7据报道,对于[60] PCBM制得的本体异质结PV电池而言,功率转换效率可以高达〜4.4%。8

有机半导体产品编号LUMOHOMO溶于:
MDMO-PPV p型546461-2.8eV-5.0eV氯仿

氯苯

二氯苯

甲苯
MEH-PPV p型541443
(MW 40 – 70 kDa)

541435
(MW 70 – 100 kDa)

536512
(MW 150 – 250 kDa)
-3.2eV-5.4eV
P3HT p型445703
(结构等规)

510823
(结构无规))

669067
(电子级)
-3.3eV-5.0eV
PCBM n型684430-3.7eV-6.1eV
表1我们的产品目录包含的p型和n型有机半导体的传导(LUMO)和价(HOMO)带能量

薄膜有机电子器件的制造过程非常复杂,分子结构的轻微变化会对膜形态和电荷输送产生深远的影响。为了帮助您优化器件的性能,我们很高兴能够为您提供一个PCBM库,其中包括基于更高富勒烯(C70和C84)的[60] PCBM类似物,以及通过化学改变添加元素得到的PCBM类似物,它们的溶解度和电子性质都有所改变。库成员在不同器件中显示出优势,并有助于您在研究中进行探索和实验。我们还可以提供不同纯度级别的[60] PCBM,可用于器件放大、研究和探索性工作(表2和表3)。 

货号品名结构应用 
684430苯基-C61-丁酸-甲酯,[60] PCBM),
99%(放大级)

最著名的PCBM化合物。有效的n型半导体,可溶于有机溶剂。用于太阳能电池(OPV),薄膜晶体管(OFET)和光探测器。6,10-11

 

684449苯基-C61-丁酸-甲酯,[60] PCBM),
99.5%(研究级)

 

684457苯基-C61-丁酸-甲酯,[60] PCBM),
99.9%(用于探索性工作)

 

684465苯基-C71-丁酸-甲酯,[70] PCBM),99%与[60PCBM相比,[70]PCBM增加了对可见光区域的光的吸收。可以改善OPV中的光捕获,12尤其是与MDMO-PPV等大型带隙供体结合使用时 (546461)

 

685321苯基-C61-丁酸-丁酯,PCBB,[60] PCB-C4> 97%PCBB的溶​​解度比[60] PCBM略高,改善了膜形态,提高了由某些有机溶剂(THF,二甲苯)沉积的OPV器件性能。14

 

684481苯基-C61-丁酸-辛酯,PCBO,[60]PCB-C8 , 99%高度可溶的PCBM适合在有机溶剂和混合物中用作一般电子受体和清除剂。

 

688215噻吩基-C61-丁酸-甲酯,[60] ThCBM,99%PCBM衍生物经过优化,可与P3HT等聚噻吩p型半导体 (669067)实现最佳混合。15

 

684503十五烷基苯基-C61-丁酸-甲酯,d5-PCBM,99%

同位素标记的PCBM适用于薄膜有机器件中薄膜形态/扩散的光谱研究(例如SIMS)。

 

 

表2我们的PCBM库
产品[60]PCBM[70]PCBM[84]PCBM[60]ThCBM
货号684430
684449
684457
684465684473688215
第一还原电位,E1/2 (V)-1.078-1.089-0.730-1.08
可溶性 (mg/ml)
·甲苯
·二甲苯
·氯苯
·氯仿
·二氯苯 (ODCB)

10
5
25
25
30

20
10
40
30
70
 
5
5
10
20
20
摩尔消光系数(mol-1 cm-1)
400 nm
650 nm

4,900
<1,000


19,000
2,000


28,000
4,000
表3部分PCBM属性
材料
Loading
1.
Newman CR, Frisbie CD, da Silva Filho DA, Brédas J, Ewbank PC, Mann KR. 2004. Introduction to Organic Thin Film Transistors and Design of n-Channel Organic Semiconductors. Chem. Mater.. 16(23):4436-4451. https://doi.org/10.1021/cm049391x
2.
Cravino A, Sariciftci NS. 2002. Double-cable polymers for fullerene based organic optoelectronic applications. J. Mater. Chem.. 12(7):1931-1943. https://doi.org/10.1039/b201558g
3.
Coakley KM, McGehee MD. 2004. Conjugated Polymer Photovoltaic Cells. Chem. Mater.. 16(23):4533-4542. https://doi.org/10.1021/cm049654n
4.
Thompson BC, Kim Y, Reynolds JR. 2005. Spectral Broadening in MEH-PPV:PCBM-Based Photovoltaic Devices via Blending with a Narrow Band Gap Cyanovinylene?Dioxythiophene Polymer. Macromolecules. 38(13):5359-5362. https://doi.org/10.1021/ma0505934
5.
Meijer EJ, de Leeuw DM, Setayesh S, van Veenendaal E, Huisman B-, Blom PWM, Hummelen JC, Scherf U, Klapwijk TM. 2003. Solution-processed ambipolar organic field-effect transistors and inverters. Nature Mater. 2(10):678-682. https://doi.org/10.1038/nmat978
6.
Wallace GG, Chen J, Li D, Moulton SE, Razal JM. 2010. Nanostructured carbon electrodes. J. Mater. Chem.. 20(18):3553. https://doi.org/10.1039/b918672g
7.
Anthopoulos TD, Tanase C, Setayesh S, Meijer EJ, Hummelen JC, Blom PWM, de Leeuw DM. 2004. Ambipolar Organic Field-Effect Transistors Based on a Solution-Processed Methanofullerene. Adv. Mater.. 16(23-24):2174-2179. https://doi.org/10.1002/adma.200400309
8.
Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y. 2005. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nature Mater. 4(11):864-868. https://doi.org/10.1038/nmat1500
9.
Günes S, Neugebauer H, Sariciftci NS. 2007. Conjugated Polymer-Based Organic Solar Cells. Chem. Rev.. 107(4):1324-1338. https://doi.org/10.1021/cr050149z
10.
Wallace GG, Chen J, Li D, Moulton SE, Razal JM. 2010. Nanostructured carbon electrodes. J. Mater. Chem.. 20(18):3553. https://doi.org/10.1039/b918672g
11.
Anthopoulos TD, de Leeuw DM, Cantatore E, van ?t Hof P, Alma J, Hummelen JC. 2005. Solution processible organic transistors and circuits based on a C70 methanofullerene. Journal of Applied Physics. 98(5):054503. https://doi.org/10.1063/1.2034083
12.
Wienk MM, Kroon JM, Verhees WJH, Knol J, Hummelen JC, van Hal PA, Janssen RAJ. 2003. Efficient Methano[70]fullerene/MDMO-PPV Bulk Heterojunction Photovoltaic Cells. Angew. Chem. Int. Ed.. 42(29):3371-3375. https://doi.org/10.1002/anie.200351647
13.
Anthopoulos T, Kooistra F, Wondergem H, Kronholm D, Hummelen J, de?Leeuw D. 2006. Air-Stable n-Channel Organic Transistors Based on a Soluble C84 Fullerene Derivative. Adv. Mater.. 18(13):1679-1684. https://doi.org/10.1002/adma.200600068
14.
Zheng L, Zhou Q, Deng X, Yuan M, Yu G, Cao Y. 2004. Methanofullerenes Used as Electron Acceptors in Polymer Photovoltaic Devices. J. Phys. Chem. B. 108(32):11921-11926. https://doi.org/10.1021/jp048890i
15.
Popescu LM, van ?t Hof P, Sieval AB, Jonkman HT, Hummelen JC. 2006. Thienyl analog of 1-(3-methoxycarbonyl)propyl-1-phenyl-[6,6]-methanofullerene for bulk heterojunction photovoltaic devices in combination with polythiophenes. Appl. Phys. Lett.. 89(21):213507. https://doi.org/10.1063/1.2397003
登录以继续。

如要继续阅读,请登录或创建帐户。

暂无帐户?