跳转至内容
Merck
CN

硫酸葡聚糖

结构

硫酸葡聚糖以钠盐形式供应,使其在水中可溶且稳定。硫酸葡聚糖含有大约17%的硫,相当于每个葡糖基残基大约有2.3个硫酸基团。

葡聚糖是葡萄糖酐聚合物。由大约95%的α-D-(166)键组成。其余的(163)键组成了葡聚糖的分支1,2,3。 分支长度上的数据冲突提示平均分支长度是小于三个葡萄糖单位的4,5 。然而,其他方法表明也存在有超过50个葡萄糖单位的分支6,7

较低分子量(MW)的葡聚糖分支较少4 并且MW分布范围更窄。8

在低离子强度溶液中,由于带负电的硫酸根基团的排斥,硫酸葡聚糖聚合物将会完全伸展。9 在高离子强度溶液中,聚合物会收缩并与去离子化葡聚糖更相似。9 在硫酸根基团的可滴定范围内的pH变化会引起膨胀和收缩。9硫酸葡聚糖的分子量可通过以下一种或多种方法进行测量:低角度激光散射10、尺寸排阻色谱11和粘度12

产品信息

我们的葡聚糖来源于肠膜明串珠菌,菌株B 512。各种分子量由有限的水解和分馏生产。硫酸酯化反应在温和条件下进行。我们供应商采用的确切方法已申请专利。葡萄聚糖的分馏可以通过尺寸排阻色谱11 或乙醇分级,其中分子量最大的葡聚糖首先沉淀。17

储存方法/稳定性

如果在室温下适当保存,硫酸葡聚糖粉末将至少保持稳定两到三年。

溶解度/溶液稳定性

我们对100 mg/mL硫酸葡聚糖在水中的溶解度进行了测试。之后获得了透明溶液。 缓冲右旋糖酐水溶液可在 110-115 °C 下高压灭菌30至45分钟。8 葡聚糖可在高温下被强酸水解。硫酸葡聚糖对钙离子的亲和力高于对钠离子的亲和力。硫酸葡聚糖的钙盐是不溶的。 硫酸葡聚糖的游离酸(氢)形式酸性很强,在溶液中会如粉末一样迅速自动水解。8

应用

脂蛋白分离

硫酸葡聚糖通常用于选择性沉淀脂蛋白。

在存在0.05%硫酸葡聚糖(MW 15000)和0.05M MnCl2的条件下,VLDL和LDL会发生沉淀。从而将最终浓度增加至0.65%硫酸葡聚糖0.2M MnCl2,导致HDL继续沉淀。14

硫酸葡聚糖(分子量500,000)同样可用于测定HDL胆固醇。15

杂交

加入终浓度为10%的硫酸葡聚糖可加速标记探针与膜固定化DNA的杂交。16 我们可提供分子生物学级的硫酸葡聚糖(分子量500,000)(货号D8906)用于该应用。

其他核酸相关应用

硫酸葡聚糖已被证明可从DNA-组蛋白复合物中释放DNA。17 硫酸葡聚糖可抑制RNA与核糖体的结合。18,19 它还是一种有效的核糖核酸酶抑制剂20,并已被用于分离核糖体。21

其他应用

硫酸葡聚糖与聚乙二醇被一起用于细菌、病毒、蛋白质和核酸的双相聚合物分离。22

已经研究了这对细胞增殖的影响。23

已证明其可与纤维蛋白原形成不溶性复合物。24

并发现硫酸葡聚糖可与病毒结合并抑制对易感细胞的初始吸附。25

相关产品
Loading

参考文献

1.
Rankin JC, Jeanes A. 1954. Evaluation of the Periodate Oxidation Method for Structural Analysis of Dextrans. J. Am. Chem. Soc.. 76(17):4435-4441. https://doi.org/10.1021/ja01646a046
2.
Dimler RJ, Wolff IA, Sloan JW, Rist CE. 1955. Interpretation of Periodate Oxidation Data on Degraded Dextran. J. Am. Chem. Soc.. 77(24):6568-6573. https://doi.org/10.1021/ja01629a044
3.
Van Cleve JW, Schaefer WC, Rist CE. 1956. The Structure of NRRL B-512 Dextran. Methylation Studies2. J. Am. Chem. Soc.. 78(17):4435-4438. https://doi.org/10.1021/ja01598a064
4.
Lindberg B, Svensson S, Sjövall J, Zaidi NA. 1968. Structural Studies on Dextran from Leuconostoc mesenteroides NRRL B-512.. Acta Chem. Scand.. 221907-1912. https://doi.org/10.3891/acta.chem.scand.22-1907
5.
Larm O, Lindberg B, Svensson S. 1971. Studies on the length of the side chains of the dextran elaborated by Leuconostoc mesenteroides NRRL B-512. Carbohydrate Research. 20(1):39-48. https://doi.org/10.1016/s0008-6215(00)84947-2
6.
Bovey FA. 1959. Enzymatic polymerization. I. Molecular weight and branching during the formation of dextran. J. Polym. Sci.. 35(128):167-182. https://doi.org/10.1002/pol.1959.1203512813
7.
Senti FR, Hellman NN, Ludwig NH, Babcock GE, Tobin R, Glass CA, Lamberts BL. 1955. Viscosity, sedimentation, and light-scattering properties of fraction of an acid-hydrolyzed dextran. J. Polym. Sci.. 17(86):527-546. https://doi.org/10.1002/pol.1955.120178605
8.
Supplier's data.
9.
Katchalsky A. 1964. Polyelectrolytes and Their Biological Interactions. Biophysical Journal. 4(1):9-41. https://doi.org/10.1016/s0006-3495(64)86924-1
10.
Allen P. 1959. Techiques of Polymer Characterization. Butterworths Scientific Publications.
11.
Granath KA, Flodin P. 1961. Makromol. Chem.. 48(1):160-171. https://doi.org/10.1002/macp.1961.020480116
12.
Granath KA. 1958. Solution properties of branched dextrans. Journal of Colloid Science. 13(4):308-328. https://doi.org/10.1016/0095-8522(58)90041-2
13.
Cramér H. 1949. On the factorization of certain probability distributions. Ark. Mat.. 1(1):61-65. https://doi.org/10.1007/bf02590468
14.
Burstein M, Scholnick HR, Morfin R. 1970. Rapid method for the isolation of lipoproteins from human serum by precipitation with polyanions. J Lipid Res. 11 (6) 583-95.
15.
Warnick GR, Benderson J, Albers JJ. 1982. Dextran sulfate-Mg2+ precipitation procedure for quantitation of high-density-lipoprotein cholesterol.. 28(6):1379-1388. https://doi.org/10.1093/clinchem/28.6.1379
16.
Wahl GM, Stern M, Stark GR. 1979. Efficient transfer of large DNA fragments from agarose gels to diazobenzyloxymethyl-paper and rapid hybridization by using dextran sulfate.. Proceedings of the National Academy of Sciences. 76(8):3683-3687. https://doi.org/10.1073/pnas.76.8.3683
17.
Kent PW, Hichens M, Ward PFV. 1958. Displacement fractionation of deoxyribonucleoproteins by heparin and dextran sulphate. 68(4):568-572. https://doi.org/10.1042/bj0680568
18.
Vazquez D, Monro R. 1967. Effects of some inhibitors of protein synthesis on the binding of aminoacyl tRNA to ribosomal subunits. Biochimica et Biophysica Acta (BBA) - Nucleic Acids and Protein Synthesis. 142(1):155-173. https://doi.org/10.1016/0005-2787(67)90524-2
19.
Miyazawa F, Olijnyk O, Tilley C, Tamaoki T. 1967. Interactions between dextran sulfate and Escherichia coli ribosomes. Biochimica et Biophysica Acta (BBA) - Nucleic Acids and Protein Synthesis. 145(1):96-104. https://doi.org/10.1016/0005-2787(67)90658-2
20.
Philipson L, Kaufman M. 1964. The efficiency of ribonuclease inhibitors tested with viral ribonucleic acid as substrate. Biochimica et Biophysica Acta (BBA) - Specialized Section on Nucleic Acids and Related Subjects. 80(1):151-154. https://doi.org/10.1016/0926-6550(64)90207-5
21.
Ascione R, Arlinghaus RB. 1970. Characterization and cell-free activity of polyribosomes isolated from baby hamster kidney cells. Biochimica et Biophysica Acta (BBA) - Nucleic Acids and Protein Synthesis. 204(2):478-488. https://doi.org/10.1016/0005-2787(70)90168-1
22.
Walter H, Johansson G. 1986. Partitioning in aqueous two-phase systems: An overview. Analytical Biochemistry. 155(2):215-242. https://doi.org/10.1016/0003-2697(86)90431-8
23.
SANDERS FK, SMITH JD. 1970. Effect of Collagen and Acid Polysaccharides on the Growth of BHK/21 Cells in Semi-solid Media. Nature. 227(5257):513-515. https://doi.org/10.1038/227513a0
24.
Sasaki S, Noguchi H. 1959. Interaction of Fibrinogen with Dextran Sulfate. 43(1):1-12. https://doi.org/10.1085/jgp.43.1.1
25.
Bengtsson S, Philipson L, Persson H, Laurent TC. 1964. The basis for the interaction between attenuated poliovirus and polyions. Virology. 24(4):617-625. https://doi.org/10.1016/0042-6822(64)90216-8
登录以继续。

如要继续阅读,请登录或创建帐户。

暂无帐户?