跳转至内容
Merck
CN

别名:LPS

使用脂多糖

脂多糖(LPS)是革兰氏阴性细菌细胞壁的特征成分; 在革兰氏阳性细菌中不存在。它位于膜外层,在无包膜菌株中暴露于细胞表面。它们有助于维持外膜完整性,保护细胞免受胆汁盐和亲脂性抗生素的作用。1

脂多糖由疏水性脂质(脂质A,负责分子的毒性特性)、亲水性核心多糖链和亲水性O抗原多糖侧链组成。在大多数情况下,O特异性链由重复的寡糖单元构成,这些寡糖具有菌株特有的结构多样性。糖的组成及其序列和连接方式决定了各种菌株的血清学O特异性。它们是沙门氏菌种血清型分类的主要决定因素。肠杆菌科细菌的O链多样性可能是在进化过程中形成的,使肠道细菌通过在其细胞表面形成新特异性(特异性于细菌血清型)而逃脱宿主的免疫系统。1

脂多糖赋予细胞抗原性,因此被称为O抗原。作为主要抗原,脂多糖参与多种宿主-寄生虫相互作用。它们似乎可以保护革兰氏阴性细菌免于吞噬和溶解。1具有常见血清型的细菌具有能产生相同抗体反应的表面抗原(O组、H组或LPS)。例如大肠杆菌的血清型O55:B5和O26:B6。这种名称是免疫学分类,具体说明哪种抗体能识别哪些菌株。不同的菌株可能具有一些共同的抗原决定簇。

野生菌株如果受到紫外线照射或被暴露于诱变化合物中,就会发生突变。少数不致命的突变会产生可存活的突变体(粗糙型菌株),这些突变体通常在自然界中不存在,且具有某些独特的特性。编码脂多糖形成的基因也可能在突变体中发生改变,产生多糖链较短的LPS。Ra、Rb、Rc、Rd、Re等(其中a、b、c等分别表示第一、第二、第三度等)表示给定LPS的多糖长度。Ra和Re分别表示链最长和最短的突变体。2最极端的突变体是Re突变体,它产生的LPS由脂质A和3-脱氧-D-甘露-辛酮糖酸(2-酮基-3-脱氧辛酸,KDO)组成,是核心的唯一组成部分。2检测粗糙型菌株的脂质A和脂多糖,进而得到KDO含量。3

纯化后的内毒素一般称为脂多糖或LPS,以区别于更天然的复合细胞膜相关形式。野生型和突变型菌株LPS的多糖链核心部分是相同的。

由LPS水解去除多糖链产生的脂质A既可以是天然存在的细胞毒性二磷酰基形式,也可以是毒性较小的单磷酰基形式。4多糖链越长,水解时间越长,水解难度越大。5,6多糖链长的LPS的脂质A含量相对较低,必须从大量水解副产物(寡糖和糖单体)中纯化。因此,脂质A的得率和回收率很低。所以多糖链短的LPS(来自突变细菌的LPS)可用于生产脂质A产品。去除脂质A的脂肪酸部分后可得到脱毒的LPS7,其内毒素水平比原LPS低约10,000倍。

对LPS的分子结构进行了研究。8,9由于LPS具有非均一性,容易形成大小不等的聚集体,因此分子量意义不大。但是,据报道,分子量范围为100万-400万或更大。当LPS经SDS和热处理后,分子量在50-100 kDa之间。在最纯的形式下、在强表面活性剂存在的情况下以及在不存在二价阳离子的情况下,细菌内毒素由10-20 kDa的大分子组成。在不存在表面活性剂的情况下和在EDTA等二价阳离子螯合剂存在的情况下,LPS排列成胶束结构,分子量约为1,000 kDa。这是可能存在于水溶液中的最小形式的细菌LPS。在Ca2+和Mg2+等二价阳离子存在情况下,会存在能穿过0.2 μm膜、但无法穿过0.025 μm膜的双层结构。在二价阳离子存在情况下,也可能在水中形成直径达0.1 μm的LPS囊泡。LPS的自聚集通常是分子中脂质A成分的功能,它还能结合疏水表面。

LPS可以通过TCA、10 苯酚11 或苯酚-氯仿-石油醚(用于粗糙型菌株)12 提取制备。TCA提取的脂多糖与苯酚提取的脂多糖结构相似。电泳图谱和内毒性也相似。主要区别在于核酸和蛋白质污染物的量。TCA提取物约含有2%的RNA和10%的变性蛋白质。苯酚提取物含有高达60%的RNA和不到1%的蛋白质。凝胶过滤色谱纯化法可除去存在于苯酚提取的LPS中的许多蛋白质,但得到的产品仍含有10-20%的核酸。采用离子交换色谱法进一步纯化,可得到蛋白质<1%和RNA <1%的LPS产品。我们提供具有各种蛋白质和/或RNA含量的LPS。

除非另有说明,否则我们的脂多糖中的内毒素含量不低于500,000 EU(内毒素单位)/mg。如果产品是500,000 EU/mg(鲎裂解物检测法)和10 EU(显色法),则1 ng内毒素相当于1 ng产品中含0.5 EU。

LPS制剂被广泛用于LPS结构鉴定、13代谢、14 免疫学、15 生理学、16毒性17和生物合成18  方面的研究,也被用于诱导白介素等生长促进因子的合成与分泌。19

将LPS分别与FITC、TRITC或2,4,6-三硝基苯磺酸反应,制得FITC(异硫氰酸荧光素)、TRITC(异硫氰酸四甲基罗丹明)和TNP(三硝基苯基)偶联物。20它们可用于研究对细菌LPS的T非依赖性B细胞免疫应答。20

注意事项和免责声明

仅供实验室使用。不可用于药物、家用或其他用途。

储存方法/稳定性

1 mg/mL的缓冲液或培养基溶液在2-8 °C下可稳定保存约一个月。 分装冻存最多可保存2年。避免反复冻融。溶液应保存在硅烷化容器中,因为LPS会与塑料和某些类型的玻璃结合(特别是在浓度<0.1 mg/mL的情况下)。LPS的浓度>1 mg/mL时,小瓶壁的吸附可以忽略不计。如果使用玻璃容器,应将溶液涡旋至少30 min,以重新溶解吸附的产品。

制备说明

本品可溶于水(5 mg/mL)或细胞培养基(1 mg/mL),得到朦胧的淡黄色溶液。经涡旋并加热至
70-80 °C,可在盐水中得到浓度更高(但是仍然模糊)的溶液(20 mg/mL)。21在每种溶剂中,脂多糖分子都会形成胶束。观察到的水和磷酸盐缓冲液溶液都是朦胧的。有机溶剂并不能形成澄清溶液。甲醇产生含有漂浮物的混浊混悬液,而水产生均一的朦胧溶液。

用于细胞培养时,向
小瓶(1 mg)中加入1 mL无菌平衡盐溶液或细胞培养基,轻轻涡旋,直至粉末溶解,从而复溶LPS。 可用其他无菌平衡盐溶液或细胞培养基将溶液进一步稀释至所需的工作浓度。

LPS产品表

* = 停产产品货号
Ph/Chl/Pet = 苯酚:氯仿:石油醚

参考文献

1.
Mayer H, Tharanathan R, Weckesser J. 1985. 6 Analysis of Lipopolysaccharides of Gram-Negative Bacteria.157-207. https://doi.org/10.1016/s0580-9517(08)70475-6
2.
Raetz CRH. 1990. Biochemistry of Endotoxins. Annu. Rev. Biochem.. 59(1):129-170. https://doi.org/10.1146/annurev.bi.59.070190.001021
3.
CYNKIN MA, ASHWELL G. 1960. Estimation of 3-Deoxy Sugars by Means of the Malonaldehyde?Thiobarbituric Acid Reaction. Nature. 186(4719):155-156. https://doi.org/10.1038/186155a0
4.
Qureshi N, Takayama K, Heller D, Fenselau C. 1983. Position of ester groups in the lipid A backbone of lipopolysaccharides obtained from Salmonella typhimurium. J Biol Chem. 258(21):12947-51.
5.
Chang C, Nowotny A. 1975. Relation of structure to function in bacterial O-antigens?VII. Endotoxicity of ?lipid A?. Immunochemistry. 12(1):19-28. https://doi.org/10.1016/0019-2791(75)90045-2
6.
Qureshi N, Takayama K, Ribi E. 1982. Purification and structural determination of nontoxic lipid A obtained from the lipopolysaccharide of Salmonella typhimurium. J Biol Chem. 257(19):11808-15.
7.
Ding HF, Nakoneczna I, Hsu HS. 1990. Protective immunity induced in mice by detoxified salmonella lipopolysaccharide. Journal of Medical Microbiology. 31(2):95-102. https://doi.org/10.1099/00222615-31-2-95
8.
JANN B, RESKE K, JANN K. 1975. Heterogeneity of Lipopolysaccharides. Analysis of Polysaccharide Chain Lengths by Sodium Dodecylsulfate-Polyacrylamide Gel Electrophoresis. Eur J Biochem. 60(1):239-246. https://doi.org/10.1111/j.1432-1033.1975.tb20996.x
9.
Leive L, Morrison DC. 1972. [23] Isolation of lipopolysaccharides from bacteria.254-262. https://doi.org/10.1016/0076-6879(72)28025-9
10.
Staub A. 1965. Bacterial Lipido-protinopolysaccharides (‘O’ Somatic Antigens) Extraction with Trichloroacetic Acid. Methods in Carbohydrate Chem. 592-93.
11.
Westphal O, Jann K. 1965. Bacterial Lipopolysaccharides Extraction with Phenol-Water and Further Applications of the Procedure. Methods in Carbohydrate Chem. 583-91.
12.
Galanos C, Luderitz O, Westphal O. 1969. A New Method for the Extraction of R Lipopolysaccharides. Eur J Biochem. 9(2):245-249. https://doi.org/10.1111/j.1432-1033.1969.tb00601.x
13.
Strain S, Fesik S, Armitage I. 1983. Characterization of lipopolysaccharide from a heptoseless mutant of Escherichia coli by carbon 13 nuclear magnetic resonance. J Biol Chem. 258(2):2906-10.
14.
Munford RS, Andersen JM, Dietschy JM. 1981. Sites of tissue binding and uptake in vivo of bacterial lipopolysaccharide-high density lipoprotein complexes: studies in the rat and squirrel monkey.. J. Clin. Invest.. 68(6):1503-1513. https://doi.org/10.1172/jci110404
15.
Morrison DC, Rudbach JA. 1981. Endotoxin-Cell-Membrane Interactions Leading to Transmembrane Signaling.187-218. https://doi.org/10.1007/978-1-4684-3917-5_6
16.
Goodwin T. 1977. Biochemistry of Lipids II. Baltimore: Univeristy Park Press.
17.
Kurtz H, Quast J. 1982. Effects of continuous intravenous infusion of Escherichia coli endotoxin into swine. Am J Vet Res. 43(2):262-8.
18.
Rick PD, Young DA. 1982. Isolation and characterization of a temperature-sensitive lethal mutant of Salmonella typhimurium that is conditionally defective in 3-deoxy-D-manno-octulosonate-8-phosphate synthesis.. 150(2):447-455. https://doi.org/10.1128/jb.150.2.447-455.1982
19.
Oppenheim JJ, Kovacs EJ, Matsushima K, Durum SK. 1986. There is more than one interleukin 1. Immunology Today. 7(2):45-56. https://doi.org/10.1016/0167-5699(86)90124-6
20.
Skelly RR, Munkenbeck P, Morrison DC. 1979. Stimulation of T-independent antibody responses by hapten-lipopolysaccharides without repeating polymeric structure.. 23(2):287-293. https://doi.org/10.1128/iai.23.2.287-293.1979
21.
Customer Report.
22.
Fomsgaard A, Freudenberg MA, Bendtzen K, Galanos C. 1990. Quantitation and biological activities of native tumour necrosis factor from LPS-stimulated human monocytes. 98(1-6):529-534. https://doi.org/10.1111/j.1699-0463.1990.tb01067.x
23.
Bleicher P, Rollins-Smith LA, Jacobs DM, Cohen N. 1983. Mitogenic responses of frog lymphocytes to crude and purified preparations of bacterial lipopolysaccharide (LPS). Developmental & Comparative Immunology. 7(3):483-496. https://doi.org/10.1016/0145-305x(83)90033-2
24.
Sveen K, Skaug N. 1992. Comparative mitogenicity and polyclonal B cell activation capacity of eight oral or nonoral bacterial lipopolysaccharides in cultures of spleen cells from athymic (nu/nu-BALB/c) and thymic (BALB/c) mice. Oral Microbiol Immunol. 7(2):71-77. https://doi.org/10.1111/j.1399-302x.1992.tb00512.x
25.
Hepper K, Garman RD, Lyons MF, Teresa GW. 1979. Plaque-forming cell response in BALB/c mice to two preparations of LPS extracted from Salmonella enteritidis. J Immunol. 122(4):1290-3.
26.
Gardiner JS, Keil LB, DeBari VA. 1991. In vitro Formation of Complement Activation Products by Lipopolysaccharide Chemotypes of Salmonellaminnesota. Int Arch Allergy Immunol. 96(1):51-54. https://doi.org/10.1159/000235534
27.
Salter M, Knowles RG, Moncada S. 1991. Widespread tissue distribution, species distribution and changes in activity of Ca2+-dependent and Ca2+-independent nitric oxide synthases. 291(1):145-149. https://doi.org/10.1016/0014-5793(91)81123-p
28.
Mond JJ, Brunswick M. 2003. Proliferative Assays for B Cell Function. Current Protocols in Immunology. 57(1): https://doi.org/10.1002/0471142735.im0310s57
29.
Geller DA, Lowenstein CJ, Shapiro RA, Nussler AK, Di Silvio M, Wang SC, Nakayama DK, Simmons RL, Snyder SH, Billiar TR. 1993. Molecular cloning and expression of inducible nitric oxide synthase from human hepatocytes.. Proceedings of the National Academy of Sciences. 90(8):3491-3495. https://doi.org/10.1073/pnas.90.8.3491
30.
Wrenger E, Baumann C, Behrend M, Zamore E, Schindler R, Brunkhorst R. 1998. Peritoneal mononuclear cell differentiation and cytokine production in intermittent and continuous automated peritoneal dialysis. American Journal of Kidney Diseases. 31(2):234-241. https://doi.org/10.1053/ajkd.1998.v31.pm9469493
31.
Hawkins D, MacKay R, MacKay S, Moldawer L. 1998. Human interleukin 10 suppresses production of inflammatory mediators by LPS-stimulated equine peritoneal macrophages. Veterinary Immunology and Immunopathology. 66(1):1-10. https://doi.org/10.1016/s0165-2427(98)00181-0
32.
Xu H, Gonzalo JA, St Pierre Y, Williams IR, Kupper TS, Cotran RS, Springer TA, Gutierrez-Ramos JC. 1994. Leukocytosis and resistance to septic shock in intercellular adhesion molecule 1-deficient mice.. 180(1):95-109. https://doi.org/10.1084/jem.180.1.95
33.
Stuehr DJ, Marletta MA. 1985. Mammalian nitrate biosynthesis: mouse macrophages produce nitrite and nitrate in response to Escherichia coli lipopolysaccharide.. Proceedings of the National Academy of Sciences. 82(22):7738-7742. https://doi.org/10.1073/pnas.82.22.7738
34.
Wang J, Kester M, Dunn MJ. 1988. The effects of endotoxin on platelet-activating factor synthesis in cultured rat glomerular mesangial cells. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 969(3):217-224. https://doi.org/10.1016/0167-4889(88)90055-9
35.
Cassatella MA, Bazzoni F, Flynn RM, Dusi S, Trinchieri G, Rossi F. 1990. Molecular basis of interferon-gamma and lipopolysaccharide enhancement of phagocyte respiratory burst capability. Studies on the gene expression of several NADPH oxidase components. J Biol Chem. 265(33):20241-6.
登录以继续。

如要继续阅读,请登录或创建帐户。

暂无帐户?