跳转至内容
Merck
CN
  • Single giant vesicle rupture events reveal multiple mechanisms of glass-supported bilayer formation.

Single giant vesicle rupture events reveal multiple mechanisms of glass-supported bilayer formation.

Biophysical journal (2006-12-26)
Chiho Hamai, Paul S Cremer, Siegfried M Musser
摘要

The formation of supported lipid bilayers (SLBs) on glass from giant unilamellar vesicles (GUVs) was studied using fluorescence microscopy. We show that GUV rupture occurs by at least four mechanisms, including 1), spontaneous rupture of isolated GUVs yielding almost heart-shaped bilayer patches (asymmetric rupture); 2), spontaneous rupture of isolated GUVs yielding circular bilayer patches (symmetric rupture); 3), induced rupture of an incoming vesicle when it contacts a planar bilayer edge; and 4), induced rupture of an adsorbed GUV when a nearby GUV spontaneously ruptures. In pathway 1, the dominant rupture pathway for isolated GUVs, GUVs deformed upon adsorption to the glass surface, and planar bilayer patch formation was initiated by rupture pore formation near the rim of the glass-bilayer interface. Expanding rupture pores led to planar bilayer formation in approximately 10-20 ms. Rupture probability per unit time depended on the average intrinsic curvature of the component lipids. The membrane leaflet adsorbed to the glass surface in planar bilayer patches originated from the outer leaflet of GUVs. Pathway 2 was rarely observed. We surmise that SLB formation is predominantly initiated by pathway 1 rupture events, and that rupture events occurring by pathways 3 and 4 dominate during later stages of SLB formation.

材料
货号
品牌
产品描述

Supelco
SLB®-1ms Capillary GC Column, L × I.D. 30 m × 0.32 mm, df 0.10 μm
Supelco
SLB®-1ms Capillary GC Column, L × I.D. 15 m × 0.32 mm, df 0.25 μm
Supelco
SLB®-1ms Capillary GC Column, L × I.D. 60 m × 0.32 mm, df 0.25 μm