- Analyses in zebrafish embryos reveal that nanotoxicity profiles are dependent on surface-functionalization controlled penetrance of biological membranes.
Analyses in zebrafish embryos reveal that nanotoxicity profiles are dependent on surface-functionalization controlled penetrance of biological membranes.
Scientific reports (2017-08-23)
Ilkka Paatero, Eudald Casals, Rasmus Niemi, Ezgi Özliseli, Jessica M Rosenholm, Cecilia Sahlgren
PMID28827674
摘要
Mesoporous silica nanoparticles (MSNs) are extensively explored as drug delivery systems, but in depth understanding of design-toxicity relationships is still scarce. We used zebrafish (Danio rerio) embryos to study toxicity profiles of differently surface functionalized MSNs. Embryos with the chorion membrane intact, or dechoroniated embryos, were incubated or microinjected with amino (NH
材料
货号
品牌
产品描述
Sigma-Aldrich
L -谷氨酰胺 溶液, 200 mM, solution, sterile-filtered, BioXtra, suitable for cell culture
Sigma-Aldrich
青链霉素, with 10,000 units penicillin and 10 mg streptomycin per mL in 0.9% NaCl, 0.1 μm filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
MEM 非必需氨基酸溶液 (100×), without L-glutamine, liquid, sterile-filtered, BioReagent, suitable for cell culture
SAFC
杜氏改良 Eagle 培养基 - 高葡萄糖, HEPES modification, With 4500 mg/L glucose, 25 mM HEPES, and sodium bicarbonate, without L-glutamine and sodium pyruvate, liquid, sterile-filtered, suitable for cell culture