跳转至内容
Merck
CN
  • Protein-drug nanoconjugates: Finding the alternative proteins as drug carrier.

Protein-drug nanoconjugates: Finding the alternative proteins as drug carrier.

International journal of biological macromolecules (2017-03-23)
Iqra Munir, Sadia Ajmal, Muhammad Raza Shah, Aftab Ahmad, Abdul Hameed, Syed Abid Ali
摘要

Present study was conducted to establish the interaction of bovine fetuin-A to validate its binding modalities with doxorubicin (Dox). Fetuin-A was purified to highest purity and monodispersity. Green synthesis of fetuin-A conjugated gold nanoparticles (F-GNPs) has been performed giving typical UV-maxima with subtle variation in fourier transform infrared spectroscopy (FTIR). Atomic force microscopy (AFM) revealed spherical shaped, polydisperse F-GNPs of varying sizes, complementing the radius of hydration (19.5-62.4nm) by dynamic light scattering (DLS). Circular dichroism (CD) analysis of fetuin-A with respect to Dox interaction shows remarkable reduction in ellipticity with increasing concentrations of Dox (20-120μM). Fetuin-A:Dox and F-GNPs:Dox at variable concentrations revealed significantly enhanced absorption spectra, while a continuous decrease in florescence (560nm). This effect was more drastic when Dox interact with fetuin-A as compared to F-GNPs. Some known antimicrobial drugs were also investigated under similar conditions, giving strong quenching effect in a dose dependent manner suggesting the significant yet differential interactions. In cytotoxicity assay, fetuin-A:Dox conjugates revealed less toxicity as compared to F-GNPs:Dox and Dox alone. In-silico studies of the fetuin-A:Dox complex suggest that the drug binds in the major grove between beta-sheet and long loop region of D1 domain and stabilized by several hydrogen bonds.