跳转至内容
Merck
CN
  • Genetic characterization of the role of the Cip/Kip family of proteins as cyclin-dependent kinase inhibitors and assembly factors.

Genetic characterization of the role of the Cip/Kip family of proteins as cyclin-dependent kinase inhibitors and assembly factors.

Molecular and cellular biology (2014-02-12)
Antonio Cerqueira, Alberto Martín, Catherine E Symonds, Junko Odajima, Pierre Dubus, Mariano Barbacid, David Santamaría
摘要

The Cip/Kip family, namely, p21(Cip1), p27(Kip1), and p57(Kip2), are stoichiometric cyclin-dependent kinase inhibitors (CKIs). Paradoxically, they have been proposed to also act as positive regulators of Cdk4/6-cyclin D by stabilizing these heterodimers. Loss of p21(Cip1) and p27(Kip1) reduces Cdk4/6-cyclin D complexes, although with limited phenotypic consequences compared to the embryonic lethality of Cdk4/6 or triple cyclin D deficiency. This milder phenotype was attributed to Cdk2 compensatory mechanisms. To address this controversy using a genetic approach, we generated Cdk2(-/-) p21(-/-) p27(-/-) mice. Triple-knockout mouse embryonic fibroblasts (MEFs) displayed minimal levels of D-type cyclins and Cdk4/6-cyclin D complexes. p57(Kip2) downregulation in the absence of p21(Cip1) and p27(Kip1) aggravated this phenotype, yet MEFs lacking all Cip/Kip proteins exhibited increased retinoblastoma phosphorylation, together with enhanced proliferation and transformation capacity. In vivo, Cdk2 ablation induced partial perinatal lethality in p21(-/-) p27(-/-) mice, suggesting partial Cdk2-dependent compensation. However, Cdk2(-/-) p21(-/-) p27(-/-) survivors displayed all phenotypes described for p27(-/-) mice, including organomegalia and pituitary tumors. Thus, Cip/Kip deficiency does not impair interphasic Cdk activity even in the absence of Cdk2, suggesting that their Cdk-cyclin assembly function is dispensable for homeostatic control in most cell types.