跳转至内容
Merck
CN
  • HUWE1 mutations in Juberg-Marsidi and Brooks syndromes: the results of an X-chromosome exome sequencing study.

HUWE1 mutations in Juberg-Marsidi and Brooks syndromes: the results of an X-chromosome exome sequencing study.

BMJ open (2016-05-01)
Michael J Friez, Susan Sklower Brooks, Roger E Stevenson, Michael Field, Monica J Basehore, Lesley C Adès, Courtney Sebold, Stephen McGee, Samantha Saxon, Cindy Skinner, Maria E Craig, Lucy Murray, Richard J Simensen, Ying Yzu Yap, Marie A Shaw, Alison Gardner, Mark Corbett, Raman Kumar, Matthias Bosshard, Barbara van Loon, Patrick S Tarpey, Fatima Abidi, Jozef Gecz, Charles E Schwartz
摘要

X linked intellectual disability (XLID) syndromes account for a substantial number of males with ID. Much progress has been made in identifying the genetic cause in many of the syndromes described 20-40 years ago. Next generation sequencing (NGS) has contributed to the rapid discovery of XLID genes and identifying novel mutations in known XLID genes for many of these syndromes. 2 NGS approaches were employed to identify mutations in X linked genes in families with XLID disorders. 1 involved exome sequencing of genes on the X chromosome using the Agilent SureSelect Human X Chromosome Kit. The second approach was to conduct targeted NGS sequencing of 90 known XLID genes. We identified the same mutation, a c.12928 G>C transversion in the HUWE1 gene, which gives rise to a p.G4310R missense mutation in 2 XLID disorders: Juberg-Marsidi syndrome (JMS) and Brooks syndrome. Although the original families with these disorders were considered separate entities, they indeed overlap clinically. A third family was also found to have a novel HUWE1 mutation. As we identified a HUWE1 mutation in an affected male from the original family reported by Juberg and Marsidi, it is evident the syndrome does not result from a mutation in ATRX as reported in the literature. Additionally, our data indicate that JMS and Brooks syndromes are allelic having the same HUWE1 mutation.

材料
货号
品牌
产品描述

Sigma-Aldrich
MISSION® esiRNA, targeting human HUWE1