跳转至内容
Merck
CN
  • Developmental switches in chemokine response profiles during B cell differentiation and maturation.

Developmental switches in chemokine response profiles during B cell differentiation and maturation.

The Journal of experimental medicine (2000-04-19)
E P Bowman, J J Campbell, D Soler, Z Dong, N Manlongat, D Picarella, R R Hardy, E C Butcher
摘要

Developing B cells undergo dramatic changes in their responses to chemoattractant cytokines (chemokines) and in expression of chemokine receptors. Bone marrow pre-pro-B cells (AA4.1(+)/natural killer 1.1(-) Fraction A cells) and cells capable of generating pro-B colonies in the presence of interleukin 7 and flt3 ligand migrate to thymus-expressed chemokine (TECK), a response lost in later stages of B cell development. B cell-attracting chemokine 1 (BCA-1) responses correlate with CXC chemokine receptor (CXCR)5 expression, are first displayed by a pro-B cell subset, are lost in pre-B cells, and then are regained just before and after egress from the marrow. All peripheral B cell subsets, including follicular and germinal center as well as marginal zone and peritoneal B1 B cells, respond to BCA-1, implying that responsiveness to this follicular chemokine is not sufficient to predict follicle localization. Responses to the CC chemokine receptor (CCR)7 ligands secondary lymphoid tissue chemoattractant (SLC) and macrophage inflammatory protein (MIP)-3beta, implicated in homing to lymphoid tissues, are upregulated before B cell exit from the marrow, but increase further in the periphery and are shared by all peripheral B cells. In contrast, responsiveness to MIP-3alpha and expression of CCR6 are acquired only after emigration to the periphery and during maturation into the recirculating B cell pool. Chemotaxis to stromal cell-derived factor 1alpha is observed at all stages of B cell differentiation. Thus, unique patterns of chemokine responses may help define developing B cell populations and direct their maturation in the marrow and migration to the periphery.