跳转至内容
Merck
CN
  • A family-based association analysis and meta-analysis of the reading disabilities candidate gene DYX1C1.

A family-based association analysis and meta-analysis of the reading disabilities candidate gene DYX1C1.

American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics (2013-01-24)
C Tran, F Gagnon, K G Wigg, Y Feng, L Gomez, T D Cate-Carter, E N Kerr, L L Field, B J Kaplan, M W Lovett, C L Barr
摘要

Reading disabilities (RD) have a significant genetic basis and have shown linkage to multiple regions including chromosome 15q. Dyslexia susceptibility 1 candidate gene 1 (DYX1C1) on chromosome 15q21 was originally proposed as a candidate gene with two potentially functional polymorphisms at the -3G/A and 1249G/T positions showing association with RD. However, subsequent studies have yielded mixed results. We performed a literature review and meta-analysis of the -3G/A and 1249G/T polymorphisms, including new unpublished data from two family-based samples. Ten markers in DYX1C1 were genotyped in the two independently ascertained samples. Single marker and -3G/A:1249G/T haplotype analyses were performed for RD in both samples, and quantitative trait analyses using standardized reading-related measures was performed in one of the samples. For the meta-analysis, we used a random-effects model to summarize studies that tested for association between -3G/A or 1249G/T and RD. No significant association was found between the DYX1C1 SNPs and RD or any of the reading-related measures tested after correction for the number of tests performed. The previously reported risk haplotype (-3A:1249T) was not biased in transmission. A total of 9 and 10 study samples were included in the meta-analysis of the -3G/A and 1249G/T polymorphisms, respectively. Neither polymorphism reached statistical significance, but the heterogeneity for the 1249G/T polymorphism was high. The results of this study do not provide evidence for association between the putatively functional SNPs -3G/A and 1249G/T and RD.