跳转至内容
Merck
CN
  • Molecular Mechanisms of Enhanced Bacterial Growth on Hexadecane with Red Clay.

Molecular Mechanisms of Enhanced Bacterial Growth on Hexadecane with Red Clay.

Microbial ecology (2015-05-10)
Jaejoon Jung, In-Ae Jang, Sungeun Ahn, Bora Shin, Jisun Kim, Chulwoo Park, Seung Cheol Jee, Jung-Suk Sung, Woojun Park
摘要

Red clay was previously used to enhance bioremediation of diesel-contaminated soil. It was speculated that the enhanced degradation of diesel was due to increased bacterial growth. In this study, we selected Acinetobacter oleivorans DR1, a soil-borne degrader of diesel and alkanes, as a model bacterium and performed transcriptional analysis using RNA sequencing to investigate the cellular response during hexadecane utilization and the mechanism by which red clay promotes hexadecane degradation. We confirmed that red clay promotes the growth of A. oleivorans DR1 on hexadecane, a major component of diesel, as a sole carbon source. Addition of red clay to hexadecane-utilizing DR1 cells highly upregulated β-oxidation, while genes related to alkane oxidation were highly expressed with and without red clay. Red clay also upregulated genes related to oxidative stress defense, such as superoxide dismutase, catalase, and glutaredoxin genes, suggesting that red clay supports the response of DR1 cells to oxidative stress generated during hexadecane utilization. Increased membrane fluidity in the presence of red clay was confirmed by fatty acid methyl ester analysis at different growth phases, suggesting that enhanced growth on hexadecane could be due to increased uptake of hexadecane coupled with upregulation of downstream metabolism and oxidative stress defense. The monitoring of the bacterial community in soil with red clay for a year revealed that red clay stabilized the community structure.

材料
货号
品牌
产品描述

Sigma-Aldrich
十六烷, ReagentPlus®, 99%
Sigma-Aldrich
十六烷, anhydrous, ≥99%
Sigma-Aldrich
十六烷, Vetec, reagent grade, 98%