跳转至内容
Merck
CN
  • Cardiomyocyte-enriched protein CIP protects against pathophysiological stresses and regulates cardiac homeostasis.

Cardiomyocyte-enriched protein CIP protects against pathophysiological stresses and regulates cardiac homeostasis.

The Journal of clinical investigation (2015-10-06)
Zhan-Peng Huang, Masaharu Kataoka, Jinghai Chen, Gengze Wu, Jian Ding, Mao Nie, Zhiqiang Lin, Jianming Liu, Xiaoyun Hu, Lixin Ma, Bin Zhou, Hiroko Wakimoto, Chunyu Zeng, Jan Kyselovic, Zhong-Liang Deng, Christine E Seidman, J G Seidman, William T Pu, Da-Zhi Wang
摘要

Cardiomyopathy is a common human disorder that is characterized by contractile dysfunction and cardiac remodeling. Genetic mutations and altered expression of genes encoding many signaling molecules and contractile proteins are associated with cardiomyopathy; however, how cardiomyocytes sense pathophysiological stresses in order to then modulate cardiac remodeling remains poorly understood. Here, we have described a regulator in the heart that harmonizes the progression of cardiac hypertrophy and dilation. We determined that expression of the myocyte-enriched protein cardiac ISL1-interacting protein (CIP, also known as MLIP) is reduced in patients with dilated cardiomyopathy. As CIP is highly conserved between human and mouse, we evaluated the effects of CIP deficiency on cardiac remodeling in mice. Deletion of the CIP-encoding gene accelerated progress from hypertrophy to heart failure in several cardiomyopathy models. Conversely, transgenic and AAV-mediated CIP overexpression prevented pathologic remodeling and preserved cardiac function. CIP deficiency combined with lamin A/C deletion resulted in severe dilated cardiomyopathy and cardiac dysfunction in the absence of stress. Transcriptome analyses of CIP-deficient hearts revealed that the p53- and FOXO1-mediated gene networks related to homeostasis are disturbed upon pressure overload stress. Moreover, FOXO1 overexpression suppressed stress-induced cardiomyocyte hypertrophy in CIP-deficient cardiomyocytes. Our studies identify CIP as a key regulator of cardiomyopathy that has potential as a therapeutic target to attenuate heart failure progression.

材料
货号
品牌
产品描述

Sigma-Aldrich
苯甲磺酰氟, ≥98.5% (GC)
Millipore
抗-FLAG® 兔抗, affinity isolated antibody, buffered aqueous solution
Sigma-Aldrich
单克隆 抗-α-肌动蛋白(肌小节) 小鼠抗, clone EA-53, ascites fluid
Sigma-Aldrich
乙二胺四乙酸 溶液, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
乙二胺四乙酸, anhydrous, crystalline, BioReagent, suitable for cell culture
Sigma-Aldrich
乙二胺四乙酸, 99.995% trace metals basis
Sigma-Aldrich
苯甲磺酰氟, ≥99.0% (T)
Sigma-Aldrich
乙二胺四乙酸, ACS reagent, 99.4-100.6%, powder
Sigma-Aldrich
乙二胺四乙酸, anhydrous, BioUltra, ≥99% (titration)
Sigma-Aldrich
乙二胺四乙酸, purified grade, ≥98.5%, powder
Sigma-Aldrich
抗-β微管蛋白抗体,小鼠单克隆 小鼠抗, clone D66, purified from hybridoma cell culture
Sigma-Aldrich
乙二胺四乙酸, Vetec, reagent grade, 98%
Sigma-Aldrich
Monoclonal Anti-MAT-Tag® antibody produced in mouse, purified immunoglobulin, ~2 mg/mL, clone MAT1-87