跳转至内容
Merck
CN

Systematic design and functional analysis of artificial microRNAs.

Nucleic acids research (2014-03-07)
Jason D Arroyo, Emily N Gallichotte, Muneesh Tewari
摘要

Unlike short interfering RNAs (siRNAs), which are commonly designed to repress a single messenger RNA (mRNA) target through perfect base pairing, microRNAs (miRNAs) are endogenous small RNAs that have evolved to concurrently repress multiple mRNA targets through imperfect complementarity. MicroRNA target recognition is primarily determined by pairing of the miRNA seed sequence (nucleotides 2-8) to complementary match sites in each mRNA target. Whereas siRNA technology is well established for single target knockdown, the design of artificial miRNAs for multi-target repression is largely unexplored. We designed and functionally analysed over 200 artificial miRNAs for simultaneous repression of pyruvate carboxylase and glutaminase by selecting all seed matches shared by their 3' untranslated regions. Although we identified multiple miRNAs that repressed endogenous protein expression of both genes, seed-based artificial miRNA design was highly inefficient, as the majority of miRNAs with even perfect seed matches did not repress either target. Moreover, commonly used target prediction programs did not substantially discriminate effective artificial miRNAs from ineffective ones, indicating that current algorithms do not fully capture the features important for artificial miRNA targeting and are not yet sufficient for designing artificial miRNAs. Our analysis suggests that additional factors are strong determinants of the efficacy of miRNA-mediated target repression and remain to be discovered.

材料
货号
品牌
产品描述

Sigma-Aldrich
MISSION® esiRNA, targeting human PODXL
Sigma-Aldrich
MISSION® esiRNA, targeting mouse Gls2
Sigma-Aldrich
MISSION® esiRNA, targeting mouse Pcx
Sigma-Aldrich
MISSION® esiRNA, targeting human KRT17
Sigma-Aldrich
MISSION® esiRNA, targeting human PROC
Sigma-Aldrich
MISSION® esiRNA, targeting human PC
Sigma-Aldrich
MISSION® esiRNA, targeting human GLS (2)
Sigma-Aldrich
MISSION® esiRNA, targeting human GLS2