跳转至内容
Merck
CN

MLLT3 regulates early human erythroid and megakaryocytic cell fate.

Cell stem cell (2008-03-29)
Cristina Pina, Gillian May, Shamit Soneji, Dengli Hong, Tariq Enver
摘要

Regulatory mechanisms of human hematopoiesis remain largely uncharacterized. Through expression profiling of prospectively isolated stem and primitive progenitor cells as well as committed progenitors from cord blood (CB), we identified MLLT3 as a candidate regulator of erythroid/megakaryocytic (E/Meg) lineage decisions. Through the analysis of the hematopoietic potential of primitive cord blood cells in which MLLT3 expression has been knocked down, we identify a requirement for MLLT3 in the elaboration of the erythroid and megakaryocytic lineages. Conversely, forced expression of MLLT3 promotes the output of erythroid and megakaryocytic progenitors, and analysis of MLLT3 mutants suggests that this capacity of MLLT3 depends on its transcriptional regulatory activity. Gene expression and cis-regulatory element analyses reveal crossregulatory interactions between MLLT3 and E/Meg-affiliated transcription factor GATA-1. Taken together, the data identify MLLT3 as a regulator of early erythroid and megakaryocytic cell fate in the human system.