跳转至内容
Merck
CN
  • Quantitative cw Overhauser effect dynamic nuclear polarization for the analysis of local water dynamics.

Quantitative cw Overhauser effect dynamic nuclear polarization for the analysis of local water dynamics.

Progress in nuclear magnetic resonance spectroscopy (2013-10-03)
John M Franck, Anna Pavlova, John A Scott, Songi Han
摘要

Liquid state Overhauser effect Dynamic Nuclear Polarization (ODNP) has experienced a recent resurgence of interest. The ODNP technique described here relies on the double resonance of electron spin resonance (ESR) at the most common, i.e. X-band (∼10GHz), frequency and ¹H nuclear magnetic resonance (NMR) at ∼15 MHz. It requires only a standard continuous wave (cw) ESR spectrometer with an NMR probe inserted or built into an X-band cavity. We focus on reviewing a new and powerful manifestation of ODNP as a high frequency NMR relaxometry tool that probes dipolar cross relaxation between the electron spins and the ¹H nuclear spins at X-band frequencies. This technique selectively measures the translational mobility of water within a volume extending 0.5-1.5 nm outward from a nitroxide radical spin probe that is attached to a targeted site of a macromolecule. It allows one to study the dynamics of water that hydrates or permeates the surface or interior of proteins, polymers, and lipid membrane vesicles. We begin by reviewing the recent advances that have helped develop ODNP into a tool for mapping the dynamic landscape of hydration water with sub-nanometer locality. In order to bind this work coherently together and to place it in the context of the extensive body of research in the field of NMR relaxometry, we then rephrase the analytical model and extend the description of the ODNP-derived NMR signal enhancements. This extended model highlights several aspects of ODNP data analysis, including the importance of considering all possible effects of microwave sample heating, the need to consider the error associated with various relaxation rates, and the unique ability of ODNP to probe the electron-¹H cross-relaxation process, which is uniquely sensitive to fast (tens of ps) dynamical processes. By implementing the relevant corrections in a stepwise fashion, this paper draws a consensus result from previous ODNP procedures and then shows how such data can be further corrected to yield clear and reproducible saturation of the NMR hyperpolarization process. Finally, drawing on these results, we broadly survey the previous ODNP dynamics literature. We find that the vast number of published, empirical hydration dynamics data can be reproducibly classified into regimes of surface, interfacial, vs. buried water dynamics.

材料
货号
品牌
产品描述

Sigma-Aldrich
水, suitable for HPLC
Sigma-Aldrich
水, Nuclease-Free Water, for Molecular Biology
Sigma-Aldrich
水, sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
水, HPLC Plus
Sigma-Aldrich
水, Deionized
Sigma-Aldrich
水, for embryo transfer, sterile-filtered, BioXtra, suitable for mouse embryo cell culture
Sigma-Aldrich
水, for molecular biology, sterile filtered
Supelco
水, suitable for ion chromatography
Sigma-Aldrich
水, BioPerformance Certified
Supelco
水, ACS reagent, for ultratrace analysis
Supelco
水, for TOC analysis
Sigma-Aldrich
水, ACS reagent
纯水密度标准物质RM, 0.9982 g/mL(20 °C), UKAS ISO/IEC17025 and ISO Guide 34 certified, density: 0.9982 g/mL at 20 °C, density: 0.9970 g/mL at 25 °C
Sigma-Aldrich
水, for cell biology, sterile ultrafiltered
Sigma-Aldrich
低氘水, ≤1 ppm (Deuterium oxide)
Sigma-Aldrich
水, PCR Reagent
Sigma-Aldrich
水-16O, ≥99.94 atom % 16O
Supelco
水, for HPCE, for luminescence, suitable for UV/Vis spectroscopy
Sigma-Aldrich
E-Toxate 水, endotoxin, free
Sigma-Aldrich
水, tested according to Ph. Eur.
水, UKAS ISO/IEC17025 and ISO Guide 34 certified, density: 0.9982 g/mL at 20 °C, density: 0.9970 g/mL at 25 °C
Supelco
密度标准品 998kg/m3, H&D Fitzgerald Ltd. Quality