跳转至内容
Merck
CN
  • A Txnrd1-dependent metabolic switch alters hepatic lipogenesis, glycogen storage, and detoxification.

A Txnrd1-dependent metabolic switch alters hepatic lipogenesis, glycogen storage, and detoxification.

Free radical biology & medicine (2013-06-08)
Sonya V Iverson, Sofi Eriksson, Jianqiang Xu, Justin R Prigge, Emily A Talago, Tesia A Meade, Erin S Meade, Mario R Capecchi, Elias S J Arnér, Edward E Schmidt
摘要

Besides helping to maintain a reducing intracellular environment, the thioredoxin (Trx) system impacts bioenergetics and drug metabolism. We show that hepatocyte-specific disruption of Txnrd1, encoding Trx reductase-1 (TrxR1), causes a metabolic switch in which lipogenic genes are repressed and periportal hepatocytes become engorged with glycogen. These livers also overexpress machinery for biosynthesis of glutathione and conversion of glycogen into UDP-glucuronate; they stockpile glutathione-S-transferases and UDP-glucuronyl-transferases; and they overexpress xenobiotic exporters. This realigned metabolic profile suggested that the mutant hepatocytes might be preconditioned to more effectively detoxify certain xenobiotic challenges. Hepatocytes convert the pro-toxin acetaminophen (APAP, paracetamol) into cytotoxic N-acetyl-p-benzoquinone imine (NAPQI). APAP defenses include glucuronidation of APAP or glutathionylation of NAPQI, allowing removal by xenobiotic exporters. We found that NAPQI directly inactivates TrxR1, yet Txnrd1-null livers were resistant to APAP-induced hepatotoxicity. Txnrd1-null livers did not have more effective gene expression responses to APAP challenge; however, their constitutive metabolic state supported more robust GSH biosynthesis, glutathionylation, and glucuronidation systems. Following APAP challenge, this effectively sustained the GSH system and attenuated damage.

材料
货号
品牌
产品描述

Sigma-Aldrich
葡萄糖 (GO) 检测试剂盒, sufficient for 20 assays
Sigma-Aldrich
糖原 来源于牛肝脏, ≥85% dry basis (enzymatic)
Sigma-Aldrich
N-乙酰苯醌亚胺
Sigma-Aldrich
硫氧还蛋白 来源于大肠杆菌, recombinant, expressed in E. coli, essentially salt-free, lyophilized powder, ≥3 units/mg protein