- Design and synthesis of a metabolically stable and potent antitussive agent, a novel delta opioid receptor antagonist, TRK-851.
Design and synthesis of a metabolically stable and potent antitussive agent, a novel delta opioid receptor antagonist, TRK-851.
We have previously reported on antitussive effect of (5R,9R,13S,14S)-17-cyclopropylmethyl-6,7-didehydro-4,5-epoxy-5',6'-dihydro-3-methoxy-4'H-pyrrolo[3,2,1-ij]quinolino[2',1':6,7]morphinan-14-ol(1b) methanesulfonate (TRK-850), a selective delta opioid receptor antagonist which markedly reduced the number of coughs in a rat cough model. We designed TRK-850 based on naltrindole (NTI), a typical delta opioid receptor antagonist, to improve its permeability through the blood-brain barrier by introducing hydrophobic moieties to NTI. The ED(50) values of NTI and compound 1b by intraperitoneal injections were 104 microg/kg and 2.07 microg/kg, respectively. This increased antitussive potency probably resulted from the improved brain exposure of compound 1b. However, 1b was extremely unstable toward metabolism by cytochrome P450. In this study, we designed and synthesized compound 1b derivatives to improve the metabolic instability, which resulted in affording highly potent and metabolically stable oral antitussive agent (5R,9R,13S,14S)-17-cyclopropylmethyl-6,7-didehydro-4,5-epoxy-8'-fluoro-5',6'-dihydro-4'H-pyrrolo[3,2,1-ij]quinolino[2',1':6,7]morphinan-3,14-diol (1c) methanesulfonate (TRK-851).