跳转至内容
Merck
CN
  • 19F-NMR and directly coupled HPLC-NMR-MS investigations into the metabolism of 2-bromo-4-trifluoromethylaniline in rat: a urinary excretion balance study without the use of radiolabelling.

19F-NMR and directly coupled HPLC-NMR-MS investigations into the metabolism of 2-bromo-4-trifluoromethylaniline in rat: a urinary excretion balance study without the use of radiolabelling.

Xenobiotica; the fate of foreign compounds in biological systems (1998-05-30)
G B Scarfe, B Wright, E Clayton, S Taylor, I D Wilson, J C Lindon, J K Nicholson
摘要

1. The metabolic fate and urinary excretion of 2-bromo-4-trifluoromethylaniline has been studied in rat using 19F-NMR spectroscopic and directly coupled HPLC-NMR-MS methods. The compound was dosed to Sprague-Dawley rats (50 mg kg-1, i.p.) and urine collected over 0-8, 8-24 and 24-48 h post-dosing. 2. A total urinary recovery of 53.5 +/- 7.0% of the dose was achieved up to 48 h after dosing. The major metabolite in the urine was identified as 2-amino-3-bromo-5-trifluoromethylphenylsulphate accounting for a total of 35.7 +/- 6.2% of the dose. 3. Further metabolites detected were 2-bromo-4-trifluoromethylphenylhydroxylamine-1V-glucuronide (9.7 +/- 0.2% of the dose), 2-bromo-4-trifluoromethylaniline-N-glucuronide (3.0 +/- 0.3%) and 2-amino-3-bromo-5-trifluoromethylphenylglucuronide (2-St 0-4). Minor metabolites, including 2-bromo-4-trifluoromethylphenylhydroxylamine-O-glucuronide, 2-amino-3-bromo-5-trifluoromethylphenol and 2-bromo-4-trifluoromethylphenylsulphamate, in total accounted for 2.3 +/- 0.9% of the dose. 4. Directly coupled HPLC-NMR-MS and 19F-NMR spectroscopy proved to be efficient techniques for the unequivocal and rapid determination of the urinary metabolic fate and excretion balance of fluorinated xenobiotics without the need for radiolabelling.