跳转至内容
Merck
CN
  • Characterization of dopamine and beta-adrenergic receptors linked to cyclic AMP formation in intact cells of the clone D384 derived from a human astrocytoma.

Characterization of dopamine and beta-adrenergic receptors linked to cyclic AMP formation in intact cells of the clone D384 derived from a human astrocytoma.

Journal of neurochemistry (1988-11-01)
A J Balmforth, K Yasunari, P F Vaughan, S G Ball
摘要

3,4-Dihydroxyphenylethylamine (dopamine) and beta-adrenergic receptor agonists and antagonists were assessed for their effects on cyclic AMP accumulation in human astrocytoma derived clone D384 cells. Dopamine, SKF 38393, and 2-amino-6,7-dihydroxy-1,2,3,4-tetrahydronaphthalene increased cyclic AMP content with Ka values of 2.0, 0.2, and 1.6 microM. The D1-selective antagonists SCH 23390 (Ki, 1.2 nM) and SKF 83566 (Ki, 0.8 nM) were over 5,000-fold more potent than the D2-selective antagonist domperidone (Ki, 6.7 microM) at inhibiting dopamine stimulation of cyclic AMP formation. SCH 23388 (Ki, 560 nM; the S-enantiomer of SCH 23390) was 400-fold less potent than SCH 23390. Isoprenaline, adrenaline, salbutamol, and noradrenaline increased cyclic AMP content with Ka values of 0.13, 0.12, 0.22, and 7.60 microM. The beta 2-selective antagonist ICI 118,551 (Ki,0.8 nM) was almost 8,000-fold more potent than the beta 1-selective antagonist practolol (Ki, 5.9 microM) at inhibiting isoprenaline stimulated cyclic AMP accumulation. These results demonstrate that D384 cells express D1-dopamine and beta 2-adrenergic receptors linked to adenylate cyclase. Furthermore, the dopamine receptor expressed by D384 cells exhibits a pharmacological profile typical of a mammalian striatal D1-receptor and therefore the use of this clone represents another approach to studying central D1-receptors.