跳转至内容
Merck
CN
  • Inhibition of brain angiotensin III attenuates sympathetic hyperactivity and cardiac dysfunction in rats post-myocardial infarction.

Inhibition of brain angiotensin III attenuates sympathetic hyperactivity and cardiac dysfunction in rats post-myocardial infarction.

Cardiovascular research (2012-12-22)
Bing S Huang, Monir Ahmad, Roselyn A White, Yannick Marc, Catherine Llorens-Cortes, Frans H H Leenen
摘要

In rats post-myocardial infarction (MI), activation of angiotensinergic pathways in the brain contributes to sympathetic hyperactivity and progressive left ventricle (LV) dysfunction. The present study examined whether angiotensin III (Ang III) is one of the main effector peptides of the brain renin-angiotensin system controlling these effects. After coronary artery ligation, Wistar rats were infused intracerebroventricularly for 4 weeks via minipumps with vehicle, the aminopeptidase A (APA) inhibitor RB150 (0.3 mg/day), which blocks the formation of brain Ang III, or losartan (0.25 mg/day). Blood pressure (BP), heart rate, and renal sympathetic nerve activity in response to air stress and acute changes in BP were measured, and LV function was evaluated by echocardiography and Millar catheter. At 4 weeks post-MI, brain APA activity was increased, sympatho-excitatory and pressor responses to air stress enhanced, and arterial baroreflex function impaired. LV end-diastolic pressure (LVEDP) was increased and ejection fraction (EF) and maximal first derivative of change in pressure over time (dP/dt(max)) were decreased. Central infusion of RB150 during 4 weeks post-MI normalized brain APA activity and responses to stress and baroreflex function, and improved LVEDP, EF, and dP/dt(max). Central infusion of losartan had similar effects but was somewhat less effective, and had no effect on brain APA activity. These results indicate that brain APA and Ang III appear to play a pivotal role in the sympathetic hyperactivity and LV dysfunction in rats post-MI. RB150 may be a potential candidate for central nervous system-targeted therapy post-MI.