跳转至内容
Merck
CN
  • Solanidine hydrolytic extraction and separation from the potato (Solanum tuberosum L.) vines by using solid-liquid-liquid systems.

Solanidine hydrolytic extraction and separation from the potato (Solanum tuberosum L.) vines by using solid-liquid-liquid systems.

Journal of agricultural and food chemistry (2003-03-20)
Nada C Nikolic, Mihajlo Z Stankovic
摘要

Solanidine is a steroidal aglycon of potato (Solanum tuberosum L.) glycoalkaloids and a very important precursor for the synthesis of hormones and some pharmacologically active compounds. Glycoalkaloids are hydrolyzed by mineral acid, yielding solanidine. This paper deals with the kinetics of solanidine hydrolytic extraction in different solid-liquid-liquid systems. The dried and milled potato (S. tuberosum L.) vines were used as a source of glycoalkaloids and as the solid phase. The solutions of hydrochloric acid in 2 and 10% (w/v) aqueous acetic acid, in 50% (volume) aqueous methanol, and in 50% (volume) aqueous ethanol were first liquid phase, and the medium for glycoalkaloid extraction from potato vines and their hydrolysis to solanidine. The chloroform, trichloroethylene, or carbon tetrachloride were the second, organic, liquid phase and the medium for solanidine extraction. This procedure combines three different processes: extraction of glycoalkaloids from potato vines, their hydrolysis to solanidine, and the extraction of solanidine, in a single step. The term hydrolytic extraction of solanidine was used for these processes. The purpose of the paper was to choose an optimal solid-liquid-liquid system for solanidine extraction and to define the procedure for its isolation from the organic liquid phase. The best degree of solanidine hydrolytic extraction (DHE) of more than 98% was achieved when 10% (w/v) hydrochloric acid in 50% (volume) methanol were the first liquid phase and chloroform was the second liquid phase, after 90 min. The yield of solanidine (q(S)) under these conditions is calculated to be 0.24 g/100 g of potato vines. Approximately 78% of the maximal possible yield of solanidine was isolated from chlorofom liquid phase. The IR and MS spectra of isolated solanidine were recorded.