- Narrowband impedance matching layer for high efficiency thickness mode ultrasonic transducers.
Narrowband impedance matching layer for high efficiency thickness mode ultrasonic transducers.
A new matching layer design concept has been proposed for narrowband continuous wave (CW) devices. Analysis has shown that the mechanical impedance of a resonant-type transducer in thickness mode CW operation does not equal its acoustic impedance rhoVs but roughly equals rhoVs/Q, where p is density, Vs is acoustic velocity, and Q is the mechanical quality factor. The value of rhoVs/Q is much lower than the acoustic impedance of water for any transducer material, including lead zirconium titanate (PZT), single crystals, or polyvinylidene fluoride (PVDF). With this new approach, the impedance of the matching layer must also be between water and pVs/Q, but there are few such practical low impedance materials. To realize equivalent low impedance structure, a novel double layer design is presented: a relatively low impedance material (such as polyethylene or polyurethane) on the inside and a relatively high impedance material (such as polyester or metal) on the outside. A high power CW transducer structure was designed and fabricated with PVDF-TrFE (polyvinylidene fluoride trifluoroethylene) to operate at 1.4 MHz. The basic quarter wavelength resonator structure is 0.7-mm alumina/0.2-mm piezo-polymer/0.25-mm polyester, and the matching section is 0.2-mm polyurethane and 0.25-mm polyester. A maximum power output of 6 to 9 W/cm2 with conversion efficiency of 30 to 35% was observed. For the transducer without matching section, the observed power was 3 to 4 W/cm2. Mason's model analyses (1) predict that the traditional matching layer is for broadband purposes and reduces output power both for PZT and PVDF-TrFE (2); this new matching scheme can be applied to PZT high power transducer. This high efficiency technique has application in various CW systems, such as Doppler sensors, interferometry, phase-sensitive imaging, or high energy focused beam systems.