- Facile synthesis, growth mechanism and reversible superhydrophobic and superhydrophilic properties of non-flaking CuO nanowires grown from porous copper substrates.
Facile synthesis, growth mechanism and reversible superhydrophobic and superhydrophilic properties of non-flaking CuO nanowires grown from porous copper substrates.
Reversible superhydrophobic and superhydrophilic surfaces based on porous substrates covered with CuO nanowires are developed in this study. A facile thermal oxidation method is used to synthesize non-flaking bicrystalline CuO nanowires on porous copper substrates in static air. The effects of thermal oxidation temperature and duration are systemically studied. The growth mechanism of the obtained non-flaking CuO nanowires is presented and the compression stress is believed to be the key driving force. The wettability of the CuO nanowires after chemical modification with trichloro(1H,1H,2H,2H-perfluorooctyl)silane is systemically investigated. The porous substrates covered with CuO nanowires exhibit excellent superhydrophobic performance with almost no water adhesion and no apparent drag resistance, and a maximum static water contact angle of 162 ± 2° is observed. Moreover, a rapid reversibly switchable wettability between superhydrophobic and superhydrophilic states is realized by the alternation of air-plasma treatment and surface fluorination. The porous substrates covered with CuO nanowires will find promising applications in surface and corrosion protection, liquid transportation, oil-water separation, and self-cleaning surfaces.