跳转至内容
Merck
CN
  • The effects of selected preoxidation strategies on I-THM formation and speciation.

The effects of selected preoxidation strategies on I-THM formation and speciation.

Water research (2012-08-15)
Darryl B Jones, Hocheol Song, Tanju Karanfil
摘要

In this study, the impacts of three preoxidation strategies [i.e., using potassium permanganate (KMnO(4)), chlorine dioxide (ClO(2)), or hydrogen peroxide (H(2)O(2))] before preformed monochloramine (NH(2)Cl) addition on the formation and speciation of iodinated trihalomethanes (I-THMs) were evaluated at the Br(-)/I(-) mass ratio of 10 in two natural waters. The effects of preoxidant dose, Br(-)/DOC, and I(-)/DOC ratio were investigated. Preoxidation with KMnO(4) increased I-THM formation due to an increase in iodoform (CHI(3)) and brominated I-THM (CHBrClI, CHBrI(2), CHBr(2)I) formation. In contrast, preoxidation with ClO(2) sometimes reduced I-THM formation, primarily due to a reduction in CHI(3) formation. Preoxidation with H(2)O(2) had no effect on I-THM formation or speciation. I-THM formation from each preoxidant alone was considerably less than the formation from NH(2)Cl. Overall, preoxidant type, preoxidant/DOC, preoxidant/I(-), and I(-)/DOC ratios are the important factors that water utilities should evaluate when assessing the impact of preoxidation for controlling I-THM formation.

材料
货号
品牌
产品描述

Sigma-Aldrich
高锰酸钾, ACS reagent, ≥99.0%
Sigma-Aldrich
高锰酸钾, puriss., meets analytical specification of Ph. Eur., BP, USP, 99-100.5%
Sigma-Aldrich
高锰酸钾, LR, ≥99%