跳转至内容
Merck
CN
  • Zinc incorporation capacity of whey protein nanoparticles prepared with desolvation with ethanol.

Zinc incorporation capacity of whey protein nanoparticles prepared with desolvation with ethanol.

Food chemistry (2012-08-08)
İbrahim Gülseren, Yuan Fang, Milena Corredig
摘要

Whey protein isolate (WPI) nanoparticles were prepared using ethanol desolvation, and their capacity to incorporate ZnCl(2) was analysed. Desolvation was carried out at pH 9 and the volume of added ethanol was 0-3 times the volume of protein solution. The desolvated solutions were dispersed in acidified water (pH 3) immediately after desolvation. The size of the WPI nanoparticles increased with the volume ratio of ethanol:water used, as well as with the amount of ZnCl(2). The nanoparticles showed high incorporation efficiencies, and remained stable after 30 days of storage at 22 °C. The amount of zinc incorporated in the WPI particle suspensions was within the range of daily zinc requirements for healthy adults.

材料
货号
品牌
产品描述

Sigma-Aldrich
氯化锌, reagent grade, ≥98%
Sigma-Aldrich
氯化锌 溶液, 0.5 M in THF
Sigma-Aldrich
0.1 M 氯化锌 溶液
Sigma-Aldrich
氯化锌, anhydrous, powder, ≥99.995% trace metals basis
Sigma-Aldrich
氯化锌, ACS reagent, ≥97%
Sigma-Aldrich
氯化锌, BioReagent, for molecular biology, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
氯化锌, puriss., meets analytical specification of Ph. Eur., BP, USP, 98-100.5%
Sigma-Aldrich
氯化锌, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥98%
Sigma-Aldrich
氯化锌, 99.999% trace metals basis
Sigma-Aldrich
氯化锌 溶液, 1.9 M in 2-methyltetrahydrofuran
Sigma-Aldrich
氯化锌, AnhydroBeads, amorphous, −10 mesh, 99.99% trace metals basis
Sigma-Aldrich
氯化锌, AnhydroBeads, amorphous, −10 mesh, 99.999% trace metals basis