- Aβ(1-42) assembly in the presence of scyllo-inositol derivatives: identification of an oxime linkage as important for the development of assembly inhibitors.
Aβ(1-42) assembly in the presence of scyllo-inositol derivatives: identification of an oxime linkage as important for the development of assembly inhibitors.
To identify a lead skeleton structure for optimization of scyllo-inositol-based inhibitors of amyloid-beta peptide (Aβ) aggregation, we have synthesized aldoxime, hydroxamate, carbamate, and amide linked scyllo-inositol derivatives. These structures represent backbones that can be readily expanded into a wide array of derivatives. They also provide conservative modifications of the scyllo-inositol backbone, as they maintain the display of the equatorial polar atoms, preserving the stereochemical requirement necessary for maximum inhibition of Aβ(1-42) fiber formation. In addition, a reliable work plan for screening derivatives was developed in order to preferentially identify a backbone(s) structure that prevents fibrillogenesis and stabilizes nontoxic small molecular weight oligomers, as we have previously reported for scyllo-inositol. In the present studies, we have adapted a high throughput ELISA-based oligomerization assay followed by atomic force microscopy to validate the results screen compounds. The lead compounds were then tested for toxicity and ability to rescue Aβ(1-42) induced toxicity in vitro and the affinity of the compounds for Aβ(1-42) compared by mass spectrometry. The data to suggest that compounds must maintain a planar conformation to exhibit activity similar to scyllo-inositol and that the oxime derivative represents the lead backbone for future development.