跳转至内容
Merck
CN
  • Suppression of CFTR-mediated Cl secretion of airway epithelium in vitamin C-deficient mice.

Suppression of CFTR-mediated Cl secretion of airway epithelium in vitamin C-deficient mice.

Journal of Korean medical science (2011-03-12)
Yeryung Kim, Hyemin Kim, Hae-Young Yoo, Jae Seung Kang, Sung Joon Kim, Jin Kyoung Kim, Hyun Sung Cho
摘要

Hyperoxic ventilation induces detrimental effects on the respiratory system, and ambient oxygen may be harmful unless compensated by physiological anti-oxidants, such as vitamin C. Here we investigate the changes in electrolyte transport of airway epithelium in mice exposed to normobaric hyperoxia and in gulonolacton oxidase knock-out (gulo[-/-]) mice without vitamin C (Vit-C) supplementation. Short-circuit current (I(sc)) of tracheal epithelium was measured using Ussing chamber technique. After confirming amiloride-sensitive Na(+) absorption (ΔI(sc,amil)), cAMP-dependent Cl(-) secretion (ΔI(sc,forsk)) was induced by forskolin. To evaluate Ca(2+)-dependent Cl(-) secretion, ATP was applied to the luminal side (ΔI(sc,ATP)). In mice exposed to 98% PO(2) for 36 hr, ΔI(sc,forsk) decreased, ΔI(sc,amil) and ΔI(sc,ATP) was not affected. In gulo(-/-) mice, both ΔI(sc,forsk) and ΔI(sc,ATP) decreased from three weeks after Vit-C deprivation, while both were unchanged with Vit-C supplementation. At the fourth week, tissue resistance and all electrolyte transport activities were decreased. An immunofluorescence study showed that the expression of cystic fibrosis conductance regulator (CFTR) was decreased in gulo(-/-) mice, whereas the expression of KCNQ1 K(+) channel was preserved. Taken together, the CFTR-mediated Cl(-) secretion of airway epithelium is susceptible to oxidative stress, which suggests that supplementation of the antioxidant might be beneficial for the maintenance of airway surface liquid.

材料
货号
品牌
产品描述

Sigma-Aldrich
L-古龙酸 γ-内酯, 95%