- 2-Methoxy-3-isobutylpyrazine in grape berries and its dependence on genotype.
2-Methoxy-3-isobutylpyrazine in grape berries and its dependence on genotype.
2-Methoxy-3-isobutylpyrazine (MIBP) contributes a bell pepper aroma to many grape cultivars and has a reported aroma threshold of ∼2 ng L(-1) in water. The purpose of this study was twofold: (1) develop a procedure using headspace solid phase micro-extraction combined with GC-MS in the selected ion monitoring mode (HS-SPME-GC-MS-SIM) for analysis of MIBP in grape berries, and (2) determine the location of MIBP biosynthesis in grapevines by approach grafting clusters of Vitis vinifera L. cvs Cabernet Sauvignon and Muscat blanc onto each other. The soluble solids and pH of the grape juice/homogenate matrix from different grape berry developmental stages influenced the method precision; therefore, quantification via the method of standard addition was used. Using our developed method, the limit of detection (LOD) and limit of quantitation (LOQ) of MIBP were 0.1 ng L(-1) and 2 ng L(-1), respectively, measured in a model juice and non-MIBP containing Chardonnay juice. Spiked recoveries averaged between 91% and 112% in Cabernet Sauvignon and Pinot noir homogenates and the overall relative standard deviation was less than 10%. The method was used to analyze MIBP in 29 grape cultivars and in fruit from clusters grafted to Cabernet Sauvignon or Muscat vines. Quantifiable levels were found only in Cabernet franc, Cabernet Sauvignon, Merlot, Sauvignon blanc and Semillon, providing information on the genetic connection for the occurrence of MIBP in grapes. No MIBP was detected in the berries of Muscat blanc clusters grafted onto Cabernet Sauvignon vines when sampled at fruit maturity. MIBP was detected in all berries of Cabernet Sauvignon regardless the graft configuration. The data indicate that MIBP or its precursors originate in the berry and its formation depends upon grape genotype.