跳转至内容
Merck
CN
  • Experimental and theoretical study on molecular structure and FT-IR, Raman, NMR spectra of 4,4'-dibromodiphenyl ether.

Experimental and theoretical study on molecular structure and FT-IR, Raman, NMR spectra of 4,4'-dibromodiphenyl ether.

Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy (2010-05-11)
Shanshan Qiu, Xiuhui Tan, Ke Wu, Aiqian Zhang, Shuokui Han, Liansheng Wang
摘要

In this work, both experimental and theoretical study on the FT-IR and Raman spectra as well as (1)H NMR and (13)C NMR chemical shifts of 4,4'-dibromodiphenyl ether have been carried out. The optimized geometry was obtained by using both HF and density functional B3LYP method with the 6-31G(d) and 6-311+G(d, p) basis sets. The calculated bond lengths and dihedral angles for both methods on 6-31G(d) level show the best agreement with the experimental data, while the dihedral angles of C(1')-O-C(1)-C(6) and C(1')-O-C(1)-C(2), critical geometry parameters for conformers in the ground state, indicates significant deviation of HF results from the experimental information. The harmonic vibration frequencies and intensities in IR and Raman spectra and chemical shifts of the molecule were calculated on the B3LYP/6-31G(d) and B3LYP/6-311+G(d, p) levels. The scaled theoretical vibration frequencies present good agreement with the experimental values. The larger basis set makes no significant improvement in the accuracy of the vibration frequencies. Besides, chemical shifts of hydrogen and carbon computed on B3LYP/6-31G(d) level agree well with the observations.