- Antioxidant enzymatically modified isoquercitrin or melatonin supplementation reduces oxidative stress-mediated hepatocellular tumor promotion of oxfendazole in rats.
Antioxidant enzymatically modified isoquercitrin or melatonin supplementation reduces oxidative stress-mediated hepatocellular tumor promotion of oxfendazole in rats.
To clarify whether enzymatically modified isoquercitrin (EMIQ) or melatonin (MLT) supplementation reduces oxidative stress-mediated hepatocellular tumor-promoting effect of oxfendazole (OX), a benzimidazole anthelmintic, male rats were administered a single intraperitoneal injection of N-diethylnitrosamine (DEN) and were fed a diet containing OX (500 ppm) for 10 weeks with or without EMIQ (2,000 ppm) or MLT (100 ppm) in the drinking water after DEN initiation. One week after the commencement of the administration of OX, rats were subjected to two-thirds of partial hepatectomy. The number of GST-P-positive foci promoted by OX was significantly inhibited by the combined antioxidant EMIQ or MLT administration, and the area of GST-P-positive foci was inhibited by the administration of MLT. Real-time RT-PCR analysis revealed decreases in mRNA expression levels of cytochrome P450, family 2, subfamily b, polypeptide 2 (Cyp2b2) and malic enzyme 1 (Me1) in the DEN-OX-EMIQ and DEN-OX-MLT groups and decreases in mRNA expression levels of Cyp1a1 and aldo-keto reductase family 7, member A3 (Akr7a3) in the DEN-OX-MLT group compared to those in the DEN-OX group. In in vitro ROS production assay, inhibited production of NADPH-dependent ROS was observed by the treatment with EMIQ or MLT. These results suggest that coadministration of EMIQ or MLT suppresses the hepatocellular tumor-promoting activity of OX in rats through the decrease in ROS production by the activation of CYPs.