跳转至内容
Merck
CN
  • Loss of ETHE1, a mitochondrial dioxygenase, causes fatal sulfide toxicity in ethylmalonic encephalopathy.

Loss of ETHE1, a mitochondrial dioxygenase, causes fatal sulfide toxicity in ethylmalonic encephalopathy.

Nature medicine (2009-01-13)
Valeria Tiranti, Carlo Viscomi, Tatjana Hildebrandt, Ivano Di Meo, Rossana Mineri, Cecilia Tiveron, Michael D Levitt, Alessandro Prelle, Gigliola Fagiolari, Marco Rimoldi, Massimo Zeviani
摘要

Ethylmalonic encephalopathy is an autosomal recessive, invariably fatal disorder characterized by early-onset encephalopathy, microangiopathy, chronic diarrhea, defective cytochrome c oxidase (COX) in muscle and brain, high concentrations of C4 and C5 acylcarnitines in blood and high excretion of ethylmalonic acid in urine. ETHE1, a gene encoding a beta-lactamase-like, iron-coordinating metalloprotein, is mutated in ethylmalonic encephalopathy. In bacteria, ETHE1-like sequences are in the same operon of, or fused with, orthologs of TST, the gene encoding rhodanese, a sulfurtransferase. In eukaryotes, both ETHE1 and rhodanese are located within the mitochondrial matrix. We created a Ethe1(-/-) mouse that showed the cardinal features of ethylmalonic encephalopathy. We found that thiosulfate was excreted in massive amounts in urine of both Ethe1(-/-) mice and humans with ethylmalonic encephalopathy. High thiosulfate and sulfide concentrations were present in Ethe1(-/-) mouse tissues. Sulfide is a powerful inhibitor of COX and short-chain fatty acid oxidation, with vasoactive and vasotoxic effects that explain the microangiopathy in ethylmalonic encephalopathy patients. Sulfide is detoxified by a mitochondrial pathway that includes a sulfur dioxygenase. Sulfur dioxygenase activity was absent in Ethe1(-/-) mice, whereas it was markedly increased by ETHE1 overexpression in HeLa cells and Escherichia coli. Therefore, ETHE1 is a mitochondrial sulfur dioxygenase involved in catabolism of sulfide that accumulates to toxic levels in ethylmalonic encephalopathy.

材料
货号
品牌
产品描述

Sigma-Aldrich
乙基丙二酸, 97%