- Interlaboratory validation of 1% pluronic l92 surfactant as a suitable, aqueous vehicle for testing pesticide formulations using the murine local lymph node assay.
Interlaboratory validation of 1% pluronic l92 surfactant as a suitable, aqueous vehicle for testing pesticide formulations using the murine local lymph node assay.
The mouse local lymph node assay (LLNA) has become the preferred test for evaluating the dermal sensitization potential of chemicals and requirements are now emerging for its use in the evaluation of their formulated products, especially in the European Union. However, despite its widespread use and extensive validation, the use of this assay for directly testing mixtures and formulated products has been questioned, which could lead to repeat testing using multiple animal models. As pesticide formulations are typically a specific complex blend of chemicals for use as aqueous-based dilutions, traditional vehicles prescribed for the LLNA may change the properties of these formulations leading to inaccurate test results and hazard identification. The objective of this study was to evaluate the effectiveness of an aqueous solution of Pluronic L92 block copolymer surfactant (L92) as a vehicle in the mouse LLNA across five laboratories. Three chemicals with known sensitization potential and four pesticide formulations for which the sensitization potential in guinea pigs and/or humans had previously been assessed were used. Identical LLNA protocols and test materials were used in the evaluation. Assessment of the positive control chemicals, hexylcinnamaldehyde, formaldehyde, and potassium dichromate revealed positive results when using 1% aqueous L92 as the vehicle. Furthermore, results for these chemicals were reproducible among the five laboratories and demonstrated consistent relative potency determinations. The four pesticide formulations diluted in 1% aqueous L92 also demonstrated reproducible results in the LLNA among the five laboratories. Results for these test materials were also consistent with those generated previously using guinea pigs or from human experience. These data support testing aqueous compatible chemicals or pesticide formulations using the mouse LLNA, and provide additional support for the use of 1% aqueous L92 as a suitable, aqueous-based vehicle.