- Biotransformation of chlorpropham (CIPC) in isolated rat hepatocytes and xenoestrogenic activity of CIPC and its metabolites by in vitro assays.
Biotransformation of chlorpropham (CIPC) in isolated rat hepatocytes and xenoestrogenic activity of CIPC and its metabolites by in vitro assays.
1: The metabolism and action of chlorpropham (isopropyl N-(3-chlorophenyl)carbamate; CIPC, a post-harvest agent) were studied in freshly isolated rat hepatocytes, and the oestrogen-like activity of CIPC and its metabolites was assessed by in vitro assays. The exposure of hepatocyte suspensions to CIPC caused concentration- (0.25-1.0 mM) and time- (0-3 h) dependent cell death, which was assessed by Trypan blue exclusion, accompanied by losses of cellular adenosine triphosphate and adenine nucleotide pools, and formation of cell bleb. 2: CIPC at a weakly toxic level (0.25 or 0.5 mM) was metabolized to isopropyl N-(3-chloro-4-hydroxyphenyl)carbamate (4OH-CIPC) and subsequently to its glucuronide and sulfate conjugates (major metabolites) or alternatively to the minor metabolites 3-chloroaniline (3CA) and 3-chloroacetanilide. CIPC (0.25 mM) added to hepatocyte suspensions was distributed equally between hepatocytes and the extracellular medium during the incubation. The glucuronide rather than the sulfate conjugate of 4OH-CIPC predominantly increased in the medium with time, while the amount of unconjugated free 4OH-CIPC in the extracellular medium increased by approximately threefold compared with the amount in the cell fraction after 0.5 h and then decreased rapidly accompanied by increases in the conjugates. This indicates that unconjugated free 4OH-CIPC produced in hepatocytes was temporarily excreted in the extracellular medium and subsequently converted to the conjugates via re-influx into hepatocytes. 3: Diethylstilbestrol (DES), bisphenol A (BPA) and 4-hydroxybenzoic acid butyl ester (butylparaben), which are known xenoestrogenic compounds, competitively displaced 17beta-oestradiol bound to the oestrogen receptor-alpha (ERalpha) in a concentration-dependent manner; IC50 values of DES, BPA, butylparaben and its derivative 3-chloro-4-hydroxybenzoic acid butyl ester (3-chloro-butylparaben) were approximately 10(-8), 10(-5), 5 x 10(-5) and 5 x 10(-4) M, respectively. In contrast, neither CIPC nor 4OH-CIPC impaired the binding of 17beta-oestradiol to ERalpha at concentrations ranging from 10(-9) to 10(-4) M, whereas at concentrations of >5 x 10(-4) M, the binding affinity of 4OH-CIPC was greater than that of CIPC. In a proliferation assay of MCF-7 cells, CIPC, 4OH-CIPC and 3CA did not increase cell numbers at concentrations ranging from 10(-9) to 10(-5) M, but these compounds at a concentration of 10(-4) M induced a considerable decrease in cell numbers relative to the control. The results suggest that even if CIPC is metabolized to 4OH-CIPC by hepatocytes, the chlorine adjacent to the 4-hydroxy group added to the intermediate as well as 3-chloro-butylparaben obstructs the appearance of oestrogen-like effects via an interaction between the intermediate and the ER.