- Inhibition of collagenase by Cr(III): its relevance to stabilization of collagen.
Inhibition of collagenase by Cr(III): its relevance to stabilization of collagen.
Bacterial collagenase has now been reacted with a select series of Cr(III) complexes and modifications in the activity of chromium-modified collagenase has been deduced from the extent of hydrolysis of (2-furanacryloyl-L-leucyl-glycyl-L-prolyl-L-alanine), FALGPA. A homologous series of Cr(III) complexes with dimeric, trimeric and tetrameric structures as in 1, 2 and 3 respectively has been investigated for their ability to inhibit the action of collagenase against FALGPA. Whereas competitive and non-competitive modes of inhibition of collagenase are expressed by 1, (dimer) and 2, (trimer) respectively, the tetramer, 3, exhibits poor affinity to collagenase and the inhibition of the enzyme activity is uncompetitive. Evidence for different modes of inhibition of collagenase depending on the nature of Cr(III) species has been presented in this work. Circular dichroism and gel electrophoresis data on Cr(III) modified collagenase corroborate the hypothesis that the inhibition of collagenase by the heavy metal ion arises from secondary and quaternary structural changes in the enzyme. The implications of the observed Cr(III) species specific inhibition of collagenase in gaining new insight into the mechanism of stabilization of collagen by Cr(III) are discussed.