- Biochemical transfer of single-copy eucaryotic genes using total cellular DNA as donor.
Biochemical transfer of single-copy eucaryotic genes using total cellular DNA as donor.
Previous studies from our laboratories have demonstrated the feasibility of transferring the thymidine kinase (tk) gene from restriction endonuclease-generated fragments of herpes simplex virus (HSV) DNA to cultured mammalian cells. In this study, high molecular weight DNA from cells containing only one copy of the HSV gene coding for tk was successfully used to transform L+K-cells to the tk+ phenotype. The acquired phenotype was demonstrated to be donor-derived by analysis of the electrophoretic mobility of the tk activity, and the presence of HSV DNA sequences in the recipient cells was demonstrated. In companion experiments, we used high molecular weight DNA derived from tissues and cultured cells of a variety of species to transfer tk activity. The tk+ mouse cells transformed with human DNA were shown to express human type tk activity as determined by isoelectric focusing.