- Amphiregulin acts as an autocrine growth factor in two human polarizing colon cancer lines that exhibit domain selective EGF receptor mitogenesis.
Amphiregulin acts as an autocrine growth factor in two human polarizing colon cancer lines that exhibit domain selective EGF receptor mitogenesis.
Colonic enterocytes, like many epithelial cells in vivo, are polarized with functionally distinct apical and basolateral membrane domains. The aims of this study were to characterize the endogenous epidermal growth factor (EGF)-like ligands expressed in two polarizing colon cancer cell lines, HCA-7 Colony 29 (HCA-7) and Caco-2, and to examine the effects of cell polarity on EGF receptor-mediated mitogenesis. HCA-7 and Caco-2 cells were grown on plastic, or as a polarized monolayer on Transwell filters. Cell proliferation was measured by 3H-thymidine incorporation and EGF receptor (EGFR) binding was assessed by Scatchard analysis. EGFR ligand expression was determined by Northern blot analysis, reverse transcription polymerase chain reaction, metabolic labelling and confocal microscopy. We found that amphiregulin (AR) was the most abundant EGFR ligand expressed in HCA-7 and Caco-2 cells. AR was localized to the basolateral surface and detected in basolateral-conditioned medium. Basolateral administration of neutralizing AR antibodies significantly reduced basal DNA replication. A single class of high-affinity EGFRs was detected in the basolateral compartment, whereas the apical compartment of polarized cells, and cells cultured on plastic, displayed two classes of receptor affinity. Basolateral administration of transforming growth factor alpha (TGF-alpha) or an EGFR neutralizing antibody also resulted in a dose-dependent stimulation or attenuation, respectively, of DNA replication. However, no mitogenic response was observed when these agents were added to the apical compartment or to confluent cells cultured on plastic. We conclude that amphiregulin acts as an autocrine growth factor in HCA-7 and Caco-2 cells, and EGFR ligand-induced proliferation is influenced by cellular polarity.