- Mechanistic and inhibition studies of chorismate-utilizing enzymes.
Mechanistic and inhibition studies of chorismate-utilizing enzymes.
The shikimate biosynthetic pathway is utilized in algae, higher plants, bacteria, fungi and apicomplexan parasites; it involves seven enzymatic steps in which phosphoenolpyruvate and erythrose 4-phosphate are converted into chorismate. In Escherichia coli, five chorismate-utilizing enzymes catalyse the synthesis of aromatic compounds such as L-phenylalanine, L-tyrosine, L-tryptophan, folate, ubiquinone and siderophores such as yersiniabactin and enterobactin. As mammals do not possess such a biosynthetic system, the enzymes involved in the pathway have aroused considerable interest as potential targets for the development of antimicrobial drugs and herbicides. As an initiative to investigate the mechanism of some of these enzymes, we showed that the antimicrobial effect of (6S)-6-fluoroshikimate is the result of irreversible inhibition of 4-amino-4-deoxychorismate synthase by 2-fluorochorismate. Based on this study, a catalytic mechanism for this enzyme was proposed, in which the residue Lys-274 is involved in the formation of a covalent intermediate. In another study, Yersinia enterocolitica Irp9, which is involved in the biosynthesis of the siderophore yersiniabactin, was for the first time biochemically characterized and shown to catalyse the formation of salicylate from chorismate via isochorismate as a reaction intermediate. A three-dimensional model for this enzyme was constructed that will guide the search for potent inhibitors of salicylate formation, and hence of bacterial iron uptake.