- Identification of an anti-idiotypic antibody that defines a B-cell subset(s) producing xenoantibodies in primates.
Identification of an anti-idiotypic antibody that defines a B-cell subset(s) producing xenoantibodies in primates.
Synthetic anti-idiotypic antibodies represent a potentially valuable tool for the isolation and characterization of B cells that produce xenoantibodies. An anti-idiotypic antibody that binds to a subset of B cells producing antibodies encoded by the variable-region heavy chain 3 (V(H)3) germline genes DP35 [immunoglobulin variable-region heavy chain 3-11 (IGHV3-11)], DP-53 and DP-54 plus a small number of V(H)4 gene-encoded antibodies in humans has recently been identified. These germline progenitors also encode xenoantibodies in humans. We tested whether the small, clearly defined group of B cells identified with this anti-idiotypic antibody produce xenoantibodies in non-human primates mounting active immune responses to porcine xenografts. Peripheral blood B cells were sorted by flow cytometry on the basis of phenotype, and cDNA libraries were prepared from each of these sorted groups of cells. Immunoglobulin V(H) gene libraries were prepared from the sorted cells, and the V(H) genes expressed in each of the sorted groups were identified by nucleic acid sequencing. Our results indicate that xenoantibody-producing peripheral blood B cells, defined on the basis of binding to fluorescein isothiocyanate (FITC)-conjugated galactose alpha(1,3) galactose-bovine serum albumin (Gal-BSA) and the anti-idiotypic antibody 2G10, used the IGHV3-11 germline gene to encode xenoantibodies and were phenotypically CD11b+ (Mac-1+) and CD5-. This novel reagent may be used in numerous applications including definition of xenoantibody-producing B-cell subsets in humans and non-human primates and immunosuppression by depletion of B cells producing anti-Gal xenoantibodies.