跳转至内容
Merck
CN
  • Stress-mediated aggregation of disease-associated proteins in amyloid bodies.

Stress-mediated aggregation of disease-associated proteins in amyloid bodies.

Scientific reports (2023-09-03)
Sahil Chandhok, Lionel Pereira, Evgenia A Momchilova, Dane Marijan, Richard Zapf, Emma Lacroix, Avneet Kaur, Shayan Keymanesh, Charles Krieger, Timothy E Audas
摘要

The formation of protein aggregates is a hallmark of many neurodegenerative diseases and systemic amyloidoses. These disorders are associated with the fibrillation of a variety of proteins/peptides, which ultimately leads to cell toxicity and tissue damage. Understanding how amyloid aggregation occurs and developing compounds that impair this process is a major challenge in the health science community. Here, we demonstrate that pathogenic proteins associated with Alzheimer's disease, diabetes, AL/AA amyloidosis, and amyotrophic lateral sclerosis can aggregate within stress-inducible physiological amyloid-based structures, termed amyloid bodies (A-bodies). Using a limited collection of small molecule inhibitors, we found that diclofenac could repress amyloid aggregation of the β-amyloid (1-42) in a cellular setting, despite having no effect in the classic Thioflavin T (ThT) in vitro fibrillation assay. Mapping the mechanism of the diclofenac-mediated repression indicated that dysregulation of cyclooxygenases and the prostaglandin synthesis pathway was potentially responsible for this effect. Together, this work suggests that the A-body machinery may be linked to a subset of pathological amyloidosis, and highlights the utility of this model system in the identification of new small molecules that could treat these debilitating diseases.

材料
货号
品牌
产品描述

Sigma-Aldrich
Anti-Amyloid Fibrils LOC Antibody, serum, Chemicon®