- Neurogenesis and anxiety-like behavior in male California mice during the mate's postpartum period.
Neurogenesis and anxiety-like behavior in male California mice during the mate's postpartum period.
Our understanding of postpartum anxiety (PPA) in fathers is limited, despite the negative consequences of anxiety on the father and child. Offspring contact reduces PPA in mothers; however, parallel investigations in fathers has gone unaddressed. Adult neurogenesis in the dentate gyrus (DG) contributes to anxiety regulation and is altered during the postpartum period, yet the effects of fatherhood on the production, or survival, of newborn cells in the DG, and the role of adult neurogenesis in PPA regulation, have not been examined. Using the biparental California mouse (Peromyscus californicus), we examined the relationships among postnatal day, anxiety-like behavior and adult neurogenesis in fathers. We hypothesized that attenuated anxiety-like behavior and enhanced adult neurogenesis would be observed when father-offspring contact was increased. We observed a reduction in anxiety-like behavior on the elevated plus-maze, but only at PND 16, a time of peak pup retrieval. Fatherhood reduced 1-week survival of newborn cells; however, surviving cells were maintained until 2 weeks postpartum. In contrast, non-fathers experienced a significant reduction in the survival of newborn cells between 1 and 2 weeks postpartum. Fatherhood also increased the numbers of newborn cells that expressed a neuronal phenotype. Collectively, these findings suggest that offspring interaction contributes to reductions in anxiety-like behavior and the maintenance of newborn neurons in the DG of fathers. These data contribute to our knowledge of the postpartum affective state in fathers, findings that may contribute to improved health of both the father and offspring.