- Intravascular glucose/lactate sensors prepared with nitric oxide releasing poly(lactide-co-glycolide)-based coatings for enhanced biocompatibility.
Intravascular glucose/lactate sensors prepared with nitric oxide releasing poly(lactide-co-glycolide)-based coatings for enhanced biocompatibility.
Intravenous amperometric needle-type enzymatic glucose/lactate sensors intended for continuous monitoring are prepared with a novel nitric oxide (NO) releasing layer to improve device hemocompatibility. To create an underlying NO release coating, the sensors with immobilized enzymes (either glucose oxidase or lactate oxidase) are prepared with a thin layer of poly(lactide-co-glycolide) (PLGA) loaded with lipophilic diazeniumdiolate species that slowly release NO via a proton driven reaction. An outer thin layer (ca. 30 μm) of PurSil (polyurethane/dimethylsiloxane copolymer) limits the flux of glucose and lactate to the inner layer of enzyme, to provide the desired linear amperometric response. A 30 μm coating of PLGA containing 33 wt% of the appropriate NO donor (N-diazeniumdiolated dibutylhexanediamine, DBHD/N₂O₂) can release NO at a physiologically relevant rate > 1 × 10⁻¹⁰mol min⁻¹ cm⁻² for at least 7 days without influencing the analytical performance of the glucose/lactate sensors. In vitro, the sensors exhibit relatively stable amperometric response over a one-week period with high selectivity over interferences (e.g., ascorbic acid) required for blood monitoring applications. Glucose sensors implanted in the veins of rabbits for 8h exhibit significantly enhanced hemocompatibility for the NO release sensors vs. corresponding controls (without NO release in same animals), with greatly reduced thrombus formation on their surfaces. Further, the analytical performance of the NO release glucose sensors are superior to controls placed in the veins of the same animals, with a greater accuracy in measuring blood glucose levels as evaluated using a Clarke error grid type analysis.