跳转至内容
Merck
CN
  • Frontal lobe microglia, neurodegenerative protein accumulation, and cognitive function in people with HIV.

Frontal lobe microglia, neurodegenerative protein accumulation, and cognitive function in people with HIV.

Acta neuropathologica communications (2022-05-08)
Jacinta Murray, Gregory Meloni, Etty P Cortes, Ariadna KimSilva, Michelle Jacobs, Alyssa Ramkissoon, John F Crary, Susan Morgello
摘要

Microglia are implicated in Alzheimer's Disease (AD) pathogenesis. In a middle-aged cohort enriched for neuroinflammation, we asked whether microgliosis was related to neocortical amyloid beta (A[Formula: see text]) deposition and neuronal phosphorylated tau (p-tau), and whether microgliosis predicted cognition. Frontal lobe tissue from 191 individuals autopsied with detectable (HIV-D) and undetectable (HIV-U) HIV infection, and 63 age-matched controls were examined. Immunohistochemistry (IHC) was used to evaluate A[Formula: see text] plaques and neuronal p-tau, and quantitate microgliosis with markers Iba1, CD163, and CD68 in large regions of cortex. Glia in the A[Formula: see text] plaque microenvironment were quantitated by immunofluorescence (IF). The relationship of microgliosis to cognition was evaluated. No relationship between A[Formula: see text] or p-tau accumulation and overall severity of microgliosis was discerned. Individuals with uncontrolled HIV had the greatest microgliosis, but fewer A[Formula: see text] plaques; they also had higher prevalence of APOE [Formula: see text]4 alleles, but died earlier than other groups. HIV group status was the only variable predicting microgliosis over large frontal regions. In contrast, in the A[Formula: see text] plaque microenvironment, APOE [Formula: see text]4 status and sex were dominant predictors of glial infiltrates, with smaller contributions of HIV status. Cognition correlated with large-scale microgliosis in HIV-D, but not HIV-U, individuals. In this autopsy cohort, over large regions of cortex, HIV status predicts microgliosis, whereas in the A[Formula: see text] plaque microenvironment, traditional risk factors of AD (APOE [Formula: see text]4 and sex) are stronger determinants. While microgliosis does not predict neurodegenerative protein deposition, it does predict cognition in HIV-D. Increased neuroinflammation does not initiate amyloid deposition in a younger group with enhanced genetic risk. However, once A[Formula: see text] deposits are established, APOE [Formula: see text]4 predicts increased plaque-associated inflammation.