跳转至内容
Merck
CN
  • Structural basis of rapid actin dynamics in the evolutionarily divergent Leishmania parasite.

Structural basis of rapid actin dynamics in the evolutionarily divergent Leishmania parasite.

Nature communications (2022-06-16)
Tommi Kotila, Hugo Wioland, Muniyandi Selvaraj, Konstantin Kogan, Lina Antenucci, Antoine Jégou, Juha T Huiskonen, Guillaume Romet-Lemonne, Pekka Lappalainen
摘要

Actin polymerization generates forces for cellular processes throughout the eukaryotic kingdom, but our understanding of the 'ancient' actin turnover machineries is limited. We show that, despite > 1 billion years of evolution, pathogenic Leishmania major parasite and mammalian actins share the same overall fold and co-polymerize with each other. Interestingly, Leishmania harbors a simple actin-regulatory machinery that lacks cofilin 'cofactors', which accelerate filament disassembly in higher eukaryotes. By applying single-filament biochemistry we discovered that, compared to mammalian proteins, Leishmania actin filaments depolymerize more rapidly from both ends, and are severed > 100-fold more efficiently by cofilin. Our high-resolution cryo-EM structures of Leishmania ADP-, ADP-Pi- and cofilin-actin filaments identify specific features at actin subunit interfaces and cofilin-actin interactions that explain the unusually rapid dynamics of parasite actin filaments. Our findings reveal how divergent parasites achieve rapid actin dynamics using a remarkably simple set of actin-binding proteins, and elucidate evolution of the actin cytoskeleton.

材料
货号
品牌
产品描述

Sigma-Aldrich
α-糜蛋白酶 来源于牛胰腺, (TLCK treated to inactivate residual tryspin activity), Type VII, essentially salt-free, lyophilized powder, ≥40 units/mg protein