跳转至内容
Merck
CN
  • RNA uridyl transferases TUT4/7 differentially regulate miRNA variants depending on the cancer cell type.

RNA uridyl transferases TUT4/7 differentially regulate miRNA variants depending on the cancer cell type.

RNA (New York, N.Y.) (2021-12-25)
Ragini Medhi, Jonathan Price, Giulia Furlan, Beronia Gorges, Alexandra Sapetschnig, Eric A Miska
摘要

The human terminal uridyl transferases TUT4 and TUT7 (TUT4/7) catalyze the additions of uridines at the 3' end of RNAs, including the precursors of the tumor suppressor miRNA let-7 upon recruitment by the oncoprotein LIN28A. As a consequence, let-7 family miRNAs are down-regulated. Disruption of this TUT4/7 activity inhibits tumorigenesis. Hence, targeting TUT4/7 could be a potential anticancer therapy. In this study, we investigate TUT4/7-mediated RNA regulation in two cancer cell lines by establishing catalytic knockout models. Upon TUT4/7 mutation, we observe a significant reduction in miRNA uridylation, which results in defects in cancer cell properties such as cell proliferation and migration. With the loss of TUT4/7-mediated miRNA uridylation, the uridylated miRNA variants are replaced by adenylated isomiRs. Changes in miRNA modification profiles are accompanied by deregulation of expression levels in specific cases. Unlike let-7s, most miRNAs do not depend on LIN28A for TUT4/7-mediated regulation. Additionally, we identify TUT4/7-regulated cell-type-specific miRNA clusters and deregulation in their corresponding mRNA targets. Expression levels of miR-200c-3p and miR-141-3p are regulated by TUT4/7 in a cancer cell-type-specific manner. Subsequently, BCL2, which is a well-established target of miR-200c is up-regulated. Therefore, TUT4/7 loss causes deregulation of miRNA-mRNA networks in a cell-type-specific manner. Understanding of the underlying biology of such cell-type-specific deregulation will be an important aspect of targeting TUT4/7 for potential cancer therapies.

材料
货号
品牌
产品描述

Sigma-Aldrich
Anti-ZCCHC6 antibody produced in rabbit, Prestige Antibodies® Powered by Atlas Antibodies, affinity isolated antibody, buffered aqueous glycerol solution, Ab2