- Src family kinases inhibition by dasatinib blocks initial and subsequent platelet deposition on collagen under flow, but lacks efficacy with thrombin generation.
Src family kinases inhibition by dasatinib blocks initial and subsequent platelet deposition on collagen under flow, but lacks efficacy with thrombin generation.
Kinase inhibitors can pose bleeding risks as platelet signaling evolves during clotting. Using microfluidics (200 s-1 wall shear rate) to perfuse Factor XIIa-inhibited or thrombin-inhibited whole blood (WB) over collagen ± tissue factor (TF), we explored the potency of the Src family kinase (SFK) inhibitor dasatinib or the spleen tyrosine kinase (Syk) inhibitor GS-9973 present at clot initiation or added after 90 s (via rapid switch to inhibitor-pretreated WB). When initially present, dasatinib potently inhibited platelet deposition on collagen (no TF). Furthermore, dasatinib immediately inhibited subsequent platelet deposition when introduced 90 s after clot initiation. However, when thrombin was generated, dasatinib was markedly less potent against platelet deposition on collagen/TF (but blocked fibrin deposition) and had no effect when added 90 s after clot initiation. Similarly, dasatinib added at 90 s had no effect on clotting on collagen/TF when fibrin was also blocked with Gly-Pro-Arg-Pro, indicating that strong thrombin-induced signaling (but not fibrin-induced signaling) can bypass the SFK inhibition at later times. The Syk inhibitor GS-9973 was less potent than dasatinib when present initially, but inhibited clot growth when added at 90 s, even in the presence of thrombin (±fibrin). Interestingly, the active form (R-406) of fostamatinib inhibits platelet function in only 2 0f 5 healthy blood samples. SFK-inhibitors may have reduced antithrombotic activity and reduced bleeding risks in settings of high TF and local thrombin generation. For oncology patients, SFK-inhibitors like dasatinib may have reduced antithrombotic activity and reduced bleeding risk in settings of local thrombin generation.