- Myoglobin promotes nitrite-dependent mitochondrial S-nitrosation to mediate cytoprotection after hypoxia/reoxygenation.
Myoglobin promotes nitrite-dependent mitochondrial S-nitrosation to mediate cytoprotection after hypoxia/reoxygenation.
It is well established that myoglobin supports mitochondrial respiration through the storage and transport of oxygen as well as through the scavenging of nitric oxide. However, during ischemia/reperfusion (I/R), myoglobin and mitochondria both propagate myocardial injury through the production of oxidants. Nitrite, an endogenous signaling molecule and dietary constituent, mediates potent cardioprotection after I/R and this effect relies on its interaction with both myoglobin and mitochondria. While independent mechanistic studies have demonstrated that nitrite-mediated cardioprotection requires the presence of myoglobin and the post-translational S-nitrosation of critical cysteine residues on mitochondrial complex I, it is unclear whether myoglobin directly catalyzes the S-nitrosation of complex I or whether mitochondrial-dependent nitrite reductase activity contributes to S-nitrosation. Herein, using purified myoglobin and isolated mitochondria, we characterize and directly compare the nitrite reductase activities of mitochondria and myoglobin and assess their contribution to mitochondrial S-nitrosation. We demonstrate that myoglobin is a significantly more efficient nitrite reductase than isolated mitochondria. Further, deoxygenated myoglobin catalyzes the nitrite-dependent S-nitrosation of mitochondrial proteins. This reaction is enhanced in the presence of oxidized (Fe3+) myoglobin and not significantly affected by inhibitors of mitochondrial respiration. Using a Chinese Hamster Ovary cell model stably transfected with human myoglobin, we show that both myoglobin and mitochondrial complex I expression are required for nitrite-dependent attenuation of cell death after anoxia/reoxygenation. These data expand the understanding of myoglobin's role both as a nitrite reductase to a mediator of S-nitrosation and as a regulator of mitochondrial function, and have implications for nitrite-mediated cardioprotection after I/R.