跳转至内容
Merck
CN

EphA4 regulates Aβ production via BACE1 expression in neurons.

FASEB journal : official publication of the Federation of American Societies for Experimental Biology (2020-10-23)
Kensuke Tamura, Yung-Wen Chiu, Azusa Shiohara, Yukiko Hori, Taisuke Tomita
摘要

Several lines of evidence suggest that the aggregation and deposition of amyloid-β peptide (Aβ) initiate the pathology of Alzheimer's disease (AD). Recently, a genome-wide association study demonstrated that a single-nucleotide polymorphism proximal to the EPHA4 gene, which encodes a receptor tyrosine kinase, is associated with AD risk. However, the molecular mechanism of EphA4 in the pathogenesis of AD, particularly in Aβ production, remains unknown. Here, we performed several pharmacological and biological experiments both in vitro and in vivo and demonstrated that EphA4 is responsible for the regulation of Aβ production. Pharmacological inhibition of EphA4 signaling and knockdown of Epha4 led to increased Aβ levels accompanied by increased expression of β-site APP cleaving enzyme 1 (BACE1), which is an enzyme responsible for Aβ production. Moreover, EPHA4 overexpression and activation of EphA4 signaling via ephrin ligands decreased Aβ levels. In particular, the sterile-alpha motif domain of EphA4 was necessary for the regulation of Aβ production. Finally, EPHA4 mRNA levels were significantly reduced in the brains of AD patients, and negatively correlated with BACE1 mRNA levels. Our results indicate a novel mechanism of Aβ regulation by EphA4, which is involved in AD pathogenesis.

材料
货号
品牌
产品描述

Sigma-Aldrich
抗-α-微管蛋白抗体,小鼠单克隆, clone DM1A, purified from hybridoma cell culture
Sigma-Aldrich
抗 呆蛋白 兔抗, IgG fraction of antiserum, buffered aqueous solution
Sigma-Aldrich
MISSION® esiRNA, targeting human EPHA4