跳转至内容
Merck
CN
  • An exploratory investigation of brain collateral circulation plasticity after cerebral ischemia in two experimental C57BL/6 mouse models.

An exploratory investigation of brain collateral circulation plasticity after cerebral ischemia in two experimental C57BL/6 mouse models.

Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism (2019-09-25)
Marco Foddis, Katarzyna Winek, Kajetan Bentele, Susanne Mueller, Sonja Blumenau, Nadine Reichhart N, Sergio Crespo-Garcia, Dermot Harnett, Andranik Ivanov, Andreas Meisel, Antonia Joussen, Olaf Strauss, Dieter Beule, Ulrich Dirnagl, Celeste Sassi
摘要

Brain collateral circulation is an essential compensatory mechanism in response to acute brain ischemia. To study the temporal evolution of brain macro and microcollateral recruitment and their reciprocal interactions in response to different ischemic conditions, we applied a combination of complementary techniques (T2-weighted magnetic resonance imaging [MRI], time of flight [TOF] angiography [MRA], cerebral blood flow [CBF] imaging and histology) in two different mouse models. Hypoperfusion was either induced by permanent bilateral common carotid artery stenosis (BCCAS) or 60-min transient unilateral middle cerebral artery occlusion (MCAO). In both models, collateralization is a very dynamic phenomenon with a global effect affecting both hemispheres. Patency of ipsilateral posterior communicating artery (PcomA) represents the main variable survival mechanism and the main determinant of stroke lesion volume and recovery in MCAO, whereas the promptness of external carotid artery retrograde flow recruitment together with PcomA patency, critically influence survival, brain ischemic lesion volume and retinopathy in BCCAS mice. Finally, different ischemic gradients shape microcollateral density and size.

材料
货号
品牌
产品描述

Sigma-Aldrich
Triton X-100, laboratory grade
Sigma-Aldrich
Anti-Glial Fibrillary Acidic Protein Rat mAb (2.2B10), liquid, clone 2.2B10, Calbiochem®