跳转至内容
Merck
CN
  • Oxyntomodulin increases the concentrations of insulin and glucose in plasma but does not affect ghrelin secretion in Holstein cattle under normal physiological conditions.

Oxyntomodulin increases the concentrations of insulin and glucose in plasma but does not affect ghrelin secretion in Holstein cattle under normal physiological conditions.

Domestic animal endocrinology (2010-08-14)
S ThanThan, H Zhao, S Yannaing, T Ishikawa, H Kuwayama
摘要

Ghrelin, the natural ligand of the growth hormone secretagogue receptor (GHS-R1a), has been shown to stimulate growth hormone (GH) secretion. Regulation of ghrelin secretion in ruminants is not well studied. We investigated the effects of oxyntomodulin (OXM) and secretin on the secretions of ghrelin, insulin, glucagon, glucose, and nonesterified fatty acids (NEFA) in pre-ruminants (5 wk old) and ruminants (10 wk old) under normal physiological (feeding) conditions. Eight male Holstein calves (pre-ruminants: 52 +/- 1 kg body weight [BW]; and ruminants: 85 +/- 1 kg BW) were injected intravenously with 30 microg of OXM/kg BW, 50 microg of secretin/kg BW, and vehicle (0.1% bovine serum albumin [BSA] in saline as a control) in random order. Blood samples were collected, and plasma hormones and metabolites were analyzed using a double-antibody radioimmunoassay system and commercially available kits, respectively. We found that OXM increased the concentrations of insulin and glucose but did not affect the concentrations of ghrelin in both pre-ruminants and ruminants and that there was no effect of secretin on the concentrations of ghrelin, insulin, and glucose in these calves. We also investigated the dose-response effects of OXM on the secretion of insulin and glucose in 8 Holstein steers (401 +/- 1 d old, 398 +/- 10 kg BW). We found that OXM increased the concentrations of insulin and glucose even at physiological plasma concentrations, with a minimum effective dose of 0.4 microg/kg for the promotion of glucose secretion and 2 microg/kg for the stimulation of insulin secretion. These findings suggest that OXM takes part in glucose metabolism in ruminants.